import streamlit as st
import base64
from reportlab.lib.pagesizes import A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib import colors
import pikepdf
import fpdf
import fitz # pymupdf
import cv2
from PIL import Image
import imutils.video
import io
import os
# Define the 12-point ML outline with emojis
ml_outline = [
"π 1. Mixture of Experts (MoE)",
"π₯ 2. Supervised Fine-Tuning (SFT) using PyTorch",
"π€ 3. Large Language Models (LLM) using Transformers",
"π 4. Self-Rewarding Learning using NPS 0-10 and Verbatims",
"π 5. Reinforcement Learning from Human Feedback (RLHF)",
"π 6. MergeKit: Merging Models to Same Embedding Space",
"π 7. DistillKit: Model Size Reduction with Spectrum Analysis",
"π§ 8. Agentic RAG Agents using Document Inputs",
"β³ 9. Longitudinal Data Summarization from Multiple Docs",
"π 10. Knowledge Extraction using Markdown Knowledge Graphs",
"πΊοΈ 11. Knowledge Mapping with Mermaid Diagrams",
"π» 12. ML Code Generation with Streamlit/Gradio/HTML5+JS"
]
# Demo functions for PDF libraries
def demo_pikepdf():
pdf = pikepdf.Pdf.new()
pdf.pages.append(pikepdf.Page(pikepdf.Dictionary()))
buffer = io.BytesIO()
pdf.save(buffer)
buffer.seek(0)
return buffer.getvalue()
def demo_fpdf():
pdf = fpdf.FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt="FPDF Demo", ln=True)
buffer = io.BytesIO()
pdf.output(buffer)
buffer.seek(0)
return buffer.getvalue()
def demo_pymupdf():
doc = fitz.open()
page = doc.new_page()
page.insert_text((100, 100), "PyMuPDF Demo")
buffer = io.BytesIO()
doc.save(buffer)
buffer.seek(0)
return buffer.getvalue()
# Demo function for image capture (using OpenCV as representative)
def demo_image_capture():
try:
cap = cv2.VideoCapture(0)
ret, frame = cap.read()
if ret:
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = Image.fromarray(rgb_frame)
buffer = io.BytesIO()
img.save(buffer, format="JPEG")
buffer.seek(0)
cap.release()
return buffer.getvalue()
cap.release()
except:
return None
return None
# Main PDF creation using ReportLab
def create_main_pdf(outline_items):
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=(A4[1], A4[0])) # Landscape
styles = getSampleStyleSheet()
story = []
# Title style
title_style = styles['Heading1']
title_style.textColor = colors.darkblue
# Normal style
normal_style = styles['Normal']
normal_style.fontSize = 10
normal_style.leading = 14
# Page 1: Items 1-6
story.append(Paragraph("Cutting-Edge ML Areas (1-6)", title_style))
story.append(Spacer(1, 12))
for item in outline_items[:6]:
story.append(Paragraph(item, normal_style))
story.append(Spacer(1, 6))
# Page break
story.append(Spacer(1, 500)) # Force new page
# Page 2: Items 7-12
story.append(Paragraph("Cutting-Edge ML Areas (7-12)", title_style))
story.append(Spacer(1, 12))
for item in outline_items[6:]:
story.append(Paragraph(item, normal_style))
story.append(Spacer(1, 6))
doc.build(story)
buffer.seek(0)
return buffer.getvalue()
def get_binary_file_downloader_html(bin_data, file_label='File'):
bin_str = base64.b64encode(bin_data).decode()
href = f'Download {file_label}'
return href
# Streamlit UI
st.title("π Cutting-Edge ML Outline Generator")
col1, col2 = st.columns(2)
with col1:
st.header("π Markdown Outline")
outline_text = "\n".join(ml_outline)
st.markdown(outline_text)
md_file = "ml_outline.md"
with open(md_file, "w", encoding='utf-8') as f:
f.write(outline_text)
st.markdown(get_binary_file_downloader_html(outline_text.encode('utf-8'), "ml_outline.md"), unsafe_allow_html=True)
with col2:
st.header("π PDF Preview & Demos")
# Library Demos
st.subheader("Library Demos")
if st.button("Run PDF Demos"):
with st.spinner("Running demos..."):
# pikepdf demo
pike_pdf = demo_pikepdf()
st.download_button("Download pikepdf Demo", pike_pdf, "pikepdf_demo.pdf")
# fpdf demo
fpdf_pdf = demo_fpdf()
st.download_button("Download fpdf Demo", fpdf_pdf, "fpdf_demo.pdf")
# pymupdf demo
pymupdf_pdf = demo_pymupdf()
st.download_button("Download pymupdf Demo", pymupdf_pdf, "pymupdf_demo.pdf")
# Image capture demo
img_data = demo_image_capture()
if img_data:
st.image(img_data, caption="OpenCV Image Capture Demo")
else:
st.warning("Image capture demo failed - camera not detected")
# Main PDF Generation
if st.button("Generate Main PDF"):
with st.spinner("Generating PDF..."):
try:
pdf_bytes = create_main_pdf(ml_outline)
with open("ml_outline.pdf", "wb") as f:
f.write(pdf_bytes)
st.download_button(
label="Download Main PDF",
data=pdf_bytes,
file_name="ml_outline.pdf",
mime="application/pdf"
)
base64_pdf = base64.b64encode(pdf_bytes).decode('utf-8')
pdf_display = f'''