File size: 12,522 Bytes
91db81f fba4d1f 9f3cf94 f6674bd 9f3cf94 f6674bd 91db81f f6674bd fba4d1f f6674bd 91db81f f6674bd ce08b6d db7d8ff ce08b6d f6674bd ce08b6d 173ec9f ce08b6d 91db81f f6674bd ce08b6d 91db81f f6674bd db7d8ff f6674bd db7d8ff f6674bd db7d8ff f6674bd ce08b6d 9d7c221 fba4d1f f6674bd db7d8ff fba4d1f ce08b6d fba4d1f f6674bd db7d8ff 9d7c221 3febaf2 a11d82f 15f6774 c283503 3febaf2 15f6774 c283503 15f6774 4735140 f6674bd 4735140 db7d8ff 4735140 db7d8ff 4735140 db7d8ff 4735140 db7d8ff 4735140 db7d8ff 4735140 f6674bd 4735140 db7d8ff 4735140 db7d8ff 4735140 db7d8ff 4735140 db7d8ff 4735140 db7d8ff 4735140 db7d8ff 4735140 db7d8ff 4735140 db7d8ff 4735140 f6674bd 4735140 f6674bd 4735140 f6674bd db7d8ff 4735140 35f0453 4735140 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import os
import io
import re
import streamlit as st
# Must be the very first Streamlit command.
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
from PIL import Image
import fitz # PyMuPDF
from reportlab.lib.pagesizes import A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
# ---------------------------------------------------------------
# Define available NotoEmoji fonts (all in the base directory now)
available_fonts = {
"NotoEmoji Variable": "NotoEmoji-VariableFont_wght.ttf",
"NotoEmoji Bold": "NotoEmoji-Bold.ttf",
"NotoEmoji Light": "NotoEmoji-Light.ttf",
"NotoEmoji Medium": "NotoEmoji-Medium.ttf",
"NotoEmoji Regular": "NotoEmoji-Regular.ttf",
"NotoEmoji SemiBold": "NotoEmoji-SemiBold.ttf"
}
# Sidebar: Let the user choose the desired NotoEmoji font.
selected_font_name = st.sidebar.selectbox(
"Select NotoEmoji Font",
options=list(available_fonts.keys())
)
selected_font_path = available_fonts[selected_font_name]
# Register the chosen emoji font with ReportLab.
pdfmetrics.registerFont(TTFont(selected_font_name, selected_font_path))
# ---------------------------------------------------------------
# Helper function to wrap emoji characters with a font tag.
def apply_emoji_font(text, emoji_font):
# This regex attempts to capture many common emoji ranges.
emoji_pattern = re.compile(
r"([\U0001F300-\U0001F5FF"
r"\U0001F600-\U0001F64F"
r"\U0001F680-\U0001F6FF"
r"\U0001F700-\U0001F77F"
r"\U0001F780-\U0001F7FF"
r"\U0001F800-\U0001F8FF"
r"\U0001F900-\U0001F9FF"
r"\U0001FA00-\U0001FA6F"
r"\U0001FA70-\U0001FAFF"
r"\u2600-\u26FF"
r"\u2700-\u27BF]+)"
)
# Wrap found emoji with a font tag using the selected emoji font.
return emoji_pattern.sub(r'<font face="{}">\1</font>'.format(emoji_font), text)
# ---------------------------------------------------------------
# Default markdown content with emojis.
default_markdown = """# Cutting-Edge ML Outline
## Core ML Techniques
1. π **Mixture of Experts (MoE)**
- Conditional computation techniques
- Sparse gating mechanisms
- Training specialized sub-models
2. π₯ **Supervised Fine-Tuning (SFT) using PyTorch**
- Loss function customization
- Gradient accumulation strategies
- Learning rate schedulers
3. π€ **Large Language Models (LLM) using Transformers**
- Attention mechanisms
- Tokenization strategies
- Position encodings
## Training Methods
4. π **Self-Rewarding Learning using NPS 0-10 and Verbatims**
- Custom reward functions
- Feedback categorization
- Signal extraction from text
5. π **Reinforcement Learning from Human Feedback (RLHF)**
- Preference datasets
- PPO implementation
- KL divergence constraints
6. π **MergeKit: Merging Models to Same Embedding Space**
- TIES merging
- Task arithmetic
- SLERP interpolation
## Optimization & Deployment
7. π **DistillKit: Model Size Reduction with Spectrum Analysis**
- Knowledge distillation
- Quantization techniques
- Model pruning strategies
8. π§ **Agentic RAG Agents using Document Inputs**
- Vector database integration
- Query planning
- Self-reflection mechanisms
9. β³ **Longitudinal Data Summarization from Multiple Docs**
- Multi-document compression
- Timeline extraction
- Entity tracking
## Knowledge Representation
10. π **Knowledge Extraction using Markdown Knowledge Graphs**
- Entity recognition
- Relationship mapping
- Hierarchical structuring
11. πΊοΈ **Knowledge Mapping with Mermaid Diagrams**
- Flowchart generation
- Sequence diagram creation
- State diagrams
12. π» **ML Code Generation with Streamlit/Gradio/HTML5+JS**
- Code completion
- Unit test generation
- Documentation synthesis
"""
# ---------------------------------------------------------------
# Process markdown into a two-column layout for the PDF.
def markdown_to_pdf_content(markdown_text):
lines = markdown_text.strip().split('\n')
pdf_content = []
in_list_item = False
current_item = None
sub_items = []
for line in lines:
line = line.strip()
if not line:
continue
if line.startswith('# '):
# Optionally skip the main title.
pass
elif line.startswith('## '):
if current_item and sub_items:
pdf_content.append([current_item, sub_items])
sub_items = []
current_item = None
section = line.replace('## ', '').strip()
pdf_content.append(f"<b>{section}</b>")
in_list_item = False
elif re.match(r'^\d+\.', line):
if current_item and sub_items:
pdf_content.append([current_item, sub_items])
sub_items = []
current_item = line.strip()
in_list_item = True
elif line.startswith('- ') and in_list_item:
sub_items.append(line.strip())
else:
if not in_list_item:
pdf_content.append(line.strip())
if current_item and sub_items:
pdf_content.append([current_item, sub_items])
mid_point = len(pdf_content) // 2
left_column = pdf_content[:mid_point]
right_column = pdf_content[mid_point:]
return left_column, right_column
# ---------------------------------------------------------------
# Create the PDF using ReportLab.
def create_main_pdf(markdown_text, base_font_size=10, auto_size=False):
buffer = io.BytesIO()
doc = SimpleDocTemplate(
buffer,
pagesize=(A4[1], A4[0]),
leftMargin=36,
rightMargin=36,
topMargin=36,
bottomMargin=36
)
styles = getSampleStyleSheet()
story = []
spacer_height = 10
left_column, right_column = markdown_to_pdf_content(markdown_text)
total_items = 0
for col in (left_column, right_column):
for item in col:
if isinstance(item, list):
main_item, sub_items = item
total_items += 1 + len(sub_items)
else:
total_items += 1
if auto_size:
base_font_size = max(6, min(12, 200 / total_items))
item_font_size = base_font_size
subitem_font_size = base_font_size * 0.9
section_font_size = base_font_size * 1.2
title_font_size = min(16, base_font_size * 1.5)
# Define ParagraphStyles using Helvetica for normal text.
title_style = ParagraphStyle(
'Heading1',
parent=styles['Heading1'],
fontName="Helvetica-Bold",
textColor=colors.darkblue,
alignment=1,
fontSize=title_font_size
)
section_style = ParagraphStyle(
'SectionStyle',
parent=styles['Heading2'],
fontName="Helvetica-Bold",
textColor=colors.darkblue,
fontSize=section_font_size,
leading=section_font_size * 1.2,
spaceAfter=2
)
item_style = ParagraphStyle(
'ItemStyle',
parent=styles['Normal'],
fontName="Helvetica",
fontSize=item_font_size,
leading=item_font_size * 1.2,
spaceAfter=1
)
subitem_style = ParagraphStyle(
'SubItemStyle',
parent=styles['Normal'],
fontName="Helvetica",
fontSize=subitem_font_size,
leading=subitem_font_size * 1.2,
leftIndent=10,
spaceAfter=1
)
story.append(Paragraph(apply_emoji_font("Cutting-Edge ML Outline (ReportLab)", selected_font_name), title_style))
story.append(Spacer(1, spacer_height))
left_cells = []
for item in left_column:
if isinstance(item, str) and item.startswith('<b>'):
# Process section headings.
text = item.replace('<b>', '').replace('</b>', '')
left_cells.append(Paragraph(apply_emoji_font(text, selected_font_name), section_style))
elif isinstance(item, list):
main_item, sub_items = item
left_cells.append(Paragraph(apply_emoji_font(main_item, selected_font_name), item_style))
for sub_item in sub_items:
left_cells.append(Paragraph(apply_emoji_font(sub_item, selected_font_name), subitem_style))
else:
left_cells.append(Paragraph(apply_emoji_font(item, selected_font_name), item_style))
right_cells = []
for item in right_column:
if isinstance(item, str) and item.startswith('<b>'):
text = item.replace('<b>', '').replace('</b>', '')
right_cells.append(Paragraph(apply_emoji_font(text, selected_font_name), section_style))
elif isinstance(item, list):
main_item, sub_items = item
right_cells.append(Paragraph(apply_emoji_font(main_item, selected_font_name), item_style))
for sub_item in sub_items:
right_cells.append(Paragraph(apply_emoji_font(sub_item, selected_font_name), subitem_style))
else:
right_cells.append(Paragraph(apply_emoji_font(item, selected_font_name), item_style))
max_cells = max(len(left_cells), len(right_cells))
left_cells.extend([""] * (max_cells - len(left_cells)))
right_cells.extend([""] * (max_cells - len(right_cells)))
table_data = list(zip(left_cells, right_cells))
col_width = (A4[1] - 72) / 2.0
table = Table(table_data, colWidths=[col_width, col_width], hAlign='CENTER')
table.setStyle(TableStyle([
('VALIGN', (0, 0), (-1, -1), 'TOP'),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('BACKGROUND', (0, 0), (-1, -1), colors.white),
('GRID', (0, 0), (-1, -1), 0, colors.white),
('LINEAFTER', (0, 0), (0, -1), 0.5, colors.grey),
('LEFTPADDING', (0, 0), (-1, -1), 2),
('RIGHTPADDING', (0, 0), (-1, -1), 2),
('TOPPADDING', (0, 0), (-1, -1), 1),
('BOTTOMPADDING', (0, 0), (-1, -1), 1),
]))
story.append(table)
doc.build(story)
buffer.seek(0)
return buffer.getvalue()
# ---------------------------------------------------------------
# Convert PDF bytes to an image for preview using PyMuPDF.
def pdf_to_image(pdf_bytes):
try:
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
page = doc[0]
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0))
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
doc.close()
return img
except Exception as e:
st.error(f"Failed to render PDF preview: {e}")
return None
# ---------------------------------------------------------------
# Sidebar options for text size.
with st.sidebar:
auto_size = st.checkbox("Auto-size text", value=True)
if not auto_size:
base_font_size = st.slider("Base Font Size (points)", min_value=6, max_value=16, value=10, step=1)
else:
base_font_size = 10
st.info("Font size will auto-adjust between 6-12 points based on content length.")
# Persist markdown content in session state.
if 'markdown_content' not in st.session_state:
st.session_state.markdown_content = default_markdown
# ---------------------------------------------------------------
# Generate the PDF.
with st.spinner("Generating PDF..."):
pdf_bytes = create_main_pdf(st.session_state.markdown_content, base_font_size, auto_size)
# Display PDF preview.
with st.container():
pdf_image = pdf_to_image(pdf_bytes)
if pdf_image:
st.image(pdf_image, use_container_width=True)
else:
st.info("Download the PDF to view it locally.")
# PDF Download button.
st.download_button(
label="Download PDF",
data=pdf_bytes,
file_name="ml_outline.pdf",
mime="application/pdf"
)
# Markdown editor.
edited_markdown = st.text_area(
"Modify the markdown content below:",
value=st.session_state.markdown_content,
height=300
)
# Update PDF on button click.
if st.button("Update PDF"):
st.session_state.markdown_content = edited_markdown
st.experimental_rerun()
# Markdown Download button.
st.download_button(
label="Save Markdown",
data=st.session_state.markdown_content,
file_name="ml_outline.md",
mime="text/markdown"
)
|