import numpy as np import torch import torch.nn as nn import gradio as gr from PIL import Image import torchvision.transforms as transforms import os # 📁 For file operations # 🧠 Neural network layers norm_layer = nn.InstanceNorm2d # 🧱 Building block for the generator class ResidualBlock(nn.Module): def __init__(self, in_features): super(ResidualBlock, self).__init__() conv_block = [ nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features), nn.ReLU(inplace=True), nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features) ] self.conv_block = nn.Sequential(*conv_block) def forward(self, x): return x + self.conv_block(x) # 🎨 Generator model for creating line drawings class Generator(nn.Module): def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): super(Generator, self).__init__() # 🏁 Initial convolution block model0 = [ nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), norm_layer(64), nn.ReLU(inplace=True) ] self.model0 = nn.Sequential(*model0) # 🔽 Downsampling model1 = [] in_features = 64 out_features = in_features*2 for _ in range(2): model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), norm_layer(out_features), nn.ReLU(inplace=True) ] in_features = out_features out_features = in_features*2 self.model1 = nn.Sequential(*model1) # 🔁 Residual blocks model2 = [] for _ in range(n_residual_blocks): model2 += [ResidualBlock(in_features)] self.model2 = nn.Sequential(*model2) # 🔼 Upsampling model3 = [] out_features = in_features//2 for _ in range(2): model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), norm_layer(out_features), nn.ReLU(inplace=True) ] in_features = out_features out_features = in_features//2 self.model3 = nn.Sequential(*model3) # 🎭 Output layer model4 = [ nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)] if sigmoid: model4 += [nn.Sigmoid()] self.model4 = nn.Sequential(*model4) def forward(self, x, cond=None): out = self.model0(x) out = self.model1(out) out = self.model2(out) out = self.model3(out) out = self.model4(out) return out # 🔧 Load the models model1 = Generator(3, 1, 3) model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu'), weights_only=True)) model1.eval() model2 = Generator(3, 1, 3) model2.load_state_dict(torch.load('model2.pth', map_location=torch.device('cpu'), weights_only=True)) model2.eval() # 🖼️ Function to process the image and create line drawing def predict(input_img, ver): # Open the image and get its original size original_img = Image.open(input_img) original_size = original_img.size # Define the transformation pipeline transform = transforms.Compose([ transforms.Resize(256, Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # Apply the transformation input_tensor = transform(original_img) input_tensor = input_tensor.unsqueeze(0) # Process the image through the model with torch.no_grad(): if ver == 'Simple Lines': output = model2(input_tensor) else: output = model1(input_tensor) # Convert the output tensor to an image output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1)) # Resize the output image back to the original size output_img = output_img.resize(original_size, Image.BICUBIC) return output_img # 📝 Title for the Gradio interface title="🖌️ Image to Artistic Drawing" # 🖼️ Dynamically generate examples from images in the directory examples = [] image_dir = '.' # Assuming images are in the current directory for file in os.listdir(image_dir): if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')): examples.append([file, 'Simple Lines']) examples.append([file, 'Complex Lines']) # 🚀 Create and launch the Gradio interface iface = gr.Interface( fn=predict, inputs=[ gr.Image(type='filepath'), gr.Radio(['Complex Lines', 'Simple Lines'], label='version', value='Simple Lines') ], outputs=gr.Image(type="pil"), title=title, examples=examples ) iface.launch()