import streamlit as st import openai from openai import OpenAI import os import base64 import cv2 from moviepy.editor import VideoFileClip # documentation # 1. Cookbook: https://cookbook.openai.com/examples/gpt4o/introduction_to_gpt4o # 2. Configure your Project and Orgs to limit/allow Models: https://platform.openai.com/settings/organization/general # 3. Watch your Billing! https://platform.openai.com/settings/organization/billing/overview # Set API key and organization ID from environment variables openai.api_key = os.getenv('OPENAI_API_KEY') openai.organization = os.getenv('OPENAI_ORG_ID') client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID')) # Define the model to be used #MODEL = "gpt-4o" MODEL = "gpt-4o-2024-05-13" def process_text(): text_input = st.text_input("Enter your text:") if text_input: completion = client.chat.completions.create( model=MODEL, messages=[ {"role": "system", "content": "You are a helpful assistant. Help me with my math homework!"}, {"role": "user", "content": f"Hello! Could you solve {text_input}?"} ] ) st.write("Assistant: " + completion.choices[0].message.content) def process_image(image_input): if image_input: base64_image = base64.b64encode(image_input.read()).decode("utf-8") response = client.chat.completions.create( model=MODEL, messages=[ {"role": "system", "content": "You are a helpful assistant that responds in Markdown."}, {"role": "user", "content": [ {"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."}, {"type": "image_url", "image_url": { "url": f"data:image/png;base64,{base64_image}"} } ]} ], temperature=0.0, ) st.markdown(response.choices[0].message.content) def process_audio(audio_input): if audio_input: transcription = client.audio.transcriptions.create( model="whisper-1", file=audio_input, ) response = client.chat.completions.create( model=MODEL, messages=[ {"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}],} ], temperature=0, ) st.markdown(response.choices[0].message.content) def process_video(video_path, seconds_per_frame=2): base64Frames = [] base_video_path, _ = os.path.splitext(video_path) video = cv2.VideoCapture(video_path) total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) fps = video.get(cv2.CAP_PROP_FPS) frames_to_skip = int(fps * seconds_per_frame) curr_frame=0 # Loop through the video and extract frames at specified sampling rate while curr_frame < total_frames - 1: video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) success, frame = video.read() if not success: break _, buffer = cv2.imencode(".jpg", frame) base64Frames.append(base64.b64encode(buffer).decode("utf-8")) curr_frame += frames_to_skip video.release() # Extract audio from video audio_path = f"{base_video_path}.mp3" clip = VideoFileClip(video_path) clip.audio.write_audiofile(audio_path, bitrate="32k") clip.audio.close() clip.close() print(f"Extracted {len(base64Frames)} frames") print(f"Extracted audio to {audio_path}") return base64Frames, audio_path # Extract 1 frame per second. You can adjust the `seconds_per_frame` parameter to change the sampling rate base64Frames, audio_path = process_video(VIDEO_PATH, seconds_per_frame=1) ## Generate a summary with visual and audio def process_video(video_input): base64Frames, audio_path = process_video(video_input, seconds_per_frame=1) response = client.chat.completions.create( model=MODEL, messages=[ {"role": "system", "content":"""You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"""}, {"role": "user", "content": [ "These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcription.text}"} ], } ], temperature=0, ) st.markdown(response.choices[0].message.content) def process_video_frames(video_path, seconds_per_frame=2): base64Frames = [] base_video_path, _ = os.path.splitext(video_path.name) video = cv2.VideoCapture(video_path.name) total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) fps = video.get(cv2.CAP_PROP_FPS) frames_to_skip = int(fps * seconds_per_frame) curr_frame = 0 while curr_frame < total_frames - 1: video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) success, frame = video.read() if not success: break _, buffer = cv2.imencode(".jpg", frame) base64Frames.append(base64.b64encode(buffer).decode("utf-8")) curr_frame += frames_to_skip video.release() audio_path = f"{base_video_path}.mp3" clip = VideoFileClip(video_path.name) clip.audio.write_audiofile(audio_path, bitrate="32k") clip.audio.close() clip.close() return base64Frames, audio_path def main(): st.markdown("### OpenAI GPT-4o Model") st.markdown("#### The Omni Model with Text, Audio, Image, and Video") option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video")) if option == "Text": process_text() elif option == "Image": image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) process_image(image_input) elif option == "Audio": audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"]) process_audio(audio_input) elif option == "Video": video_input = st.file_uploader("Upload a video file", type=["mp4"]) process_video(video_input) if __name__ == "__main__": main()