import streamlit as st
import openai
from openai import OpenAI
import os, base64, cv2, glob
from moviepy.editor import VideoFileClip
from datetime import datetime
import pytz
from audio_recorder_streamlit import audio_recorder
from PIL import Image

openai.api_key, openai.organization = os.getenv('OPENAI_API_KEY'), os.getenv('OPENAI_ORG_ID') 
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))

MODEL = "gpt-4o-2024-05-13"

if 'messages' not in st.session_state:
    st.session_state.messages = []

def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    safe_prompt = "".join(x for x in prompt.replace(" ", "_").replace("\n", "_") if x.isalnum() or x == "_")[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

def create_file(filename, prompt, response, should_save=True):
    if should_save and os.path.splitext(filename)[1] in ['.txt', '.htm', '.md']:
        with open(os.path.splitext(filename)[0] + ".md", 'w', encoding='utf-8') as file:
            file.write(response)

def process_text(text_input):
    if text_input:
        st.session_state.messages.append({"role": "user", "content": text_input})
        with st.chat_message("user"):
            st.markdown(text_input)
        completion = client.chat.completions.create(model=MODEL, messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=False)
        return_text = completion.choices[0].message.content
        with st.chat_message("assistant"):
            st.markdown(return_text)
        filename = generate_filename(text_input, "md")
        create_file(filename, text_input, return_text)
        st.session_state.messages.append({"role": "assistant", "content": return_text})

def process_text2(MODEL='gpt-4o-2024-05-13', text_input='What is 2+2 and what is an imaginary number'):
    if text_input:
        st.session_state.messages.append({"role": "user", "content": text_input})
        completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages)
        return_text = completion.choices[0].message.content
        st.write("Assistant: " + return_text)
        filename = generate_filename(text_input, "md")
        create_file(filename, text_input, return_text, should_save=True)
        return return_text

def save_image(image_input, filename):
    with open(filename, "wb") as f:
        f.write(image_input.getvalue())
    return filename

def process_image(image_input):
    if image_input:
        with st.chat_message("user"):
            st.markdown('Processing image:  ' + image_input.name)
        base64_image = base64.b64encode(image_input.read()).decode("utf-8")
        st.session_state.messages.append({"role": "user", "content": [{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}]})
        response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0.0)
        image_response = response.choices[0].message.content
        with st.chat_message("assistant"):
            st.markdown(image_response)
        filename_md, filename_img = generate_filename(image_input.name + '- ' + image_response, "md"), image_input.name
        create_file(filename_md, image_response, '', True)
        with open(filename_md, "w", encoding="utf-8") as f:
            f.write(image_response)
        save_image(image_input, filename_img)
        st.session_state.messages.append({"role": "assistant", "content": image_response})
        return image_response

def process_audio(audio_input):
    if audio_input:
        st.session_state.messages.append({"role": "user", "content": audio_input})
        transcription = client.audio.transcriptions.create(model="whisper-1", file=audio_input)
        response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}]}], temperature=0)
        audio_response = response.choices[0].message.content
        with st.chat_message("assistant"):
            st.markdown(audio_response)
        filename = generate_filename(transcription.text, "md")
        create_file(filename, transcription.text, audio_response, should_save=True)
        st.session_state.messages.append({"role": "assistant", "content": audio_response})

def process_audio_and_video(video_input):
    if video_input is not None:
        video_path = save_video(video_input)
        base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
        transcript = process_audio_for_video(video_input)
        st.session_state.messages.append({"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcript}"}]})
        response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0)
        video_response = response.choices[0].message.content
        with st.chat_message("assistant"):
            st.markdown(video_response)
        filename = generate_filename(transcript, "md")
        create_file(filename, transcript, video_response, should_save=True)
        st.session_state.messages.append({"role": "assistant", "content": video_response})

def process_audio_for_video(video_input):
    if video_input:
        st.session_state.messages.append({"role": "user", "content": video_input})
        transcription = client.audio.transcriptions.create(model="whisper-1", file=video_input)
        response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}]}], temperature=0)
        video_response = response.choices[0].message.content
        with st.chat_message("assistant"):
            st.markdown(video_response)
        filename = generate_filename(transcription.text, "md")
        create_file(filename, transcription.text, video_response, should_save=True)
        st.session_state.messages.append({"role": "assistant", "content": video_response})
        return video_response

def save_video(video_file):
    with open(video_file.name, "wb") as f:
        f.write(video_file.getbuffer())
    return video_file.name

def process_video(video_path, seconds_per_frame=2):
    base64Frames, base_video_path = [], os.path.splitext(video_path)[0]
    video, total_frames, fps = cv2.VideoCapture(video_path), int(cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FRAME_COUNT)), cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FPS)
    curr_frame, frames_to_skip = 0, int(fps * seconds_per_frame)
    while curr_frame < total_frames - 1:
        video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
        success, frame = video.read()
        if not success: break
        _, buffer = cv2.imencode(".jpg", frame)
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
        curr_frame += frames_to_skip
    video.release()
    audio_path = f"{base_video_path}.mp3"
    clip = VideoFileClip(video_path)
    clip.audio.write_audiofile(audio_path, bitrate="32k")
    clip.audio.close()
    clip.close()
    print(f"Extracted {len(base64Frames)} frames")
    print(f"Extracted audio to {audio_path}")
    return base64Frames, audio_path

def save_and_play_audio(audio_recorder):
    audio_bytes = audio_recorder(key='audio_recorder')
    if audio_bytes:
        filename = generate_filename("Recording", "wav")
        with open(filename, 'wb') as f:
            f.write(audio_bytes)
        st.audio(audio_bytes, format="audio/wav")
        return filename
    return None

@st.cache_resource
def display_videos_and_links(num_columns):
    video_files = [f for f in os.listdir('.') if f.endswith('.mp4')]
    if not video_files:
        st.write("No MP4 videos found in the current directory.")
        return
    video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0]))
    cols = st.columns(num_columns) # Define num_columns columns outside the loop
    col_index = 0 # Initialize column index
    for video_file in video_files_sorted:
        with cols[col_index % num_columns]: # Use modulo 2 to alternate between the first and second column
            k = video_file.split('.')[0] # Assumes keyword is the file name without extension
            st.video(video_file, format='video/mp4', start_time=0)
            display_glossary_entity(k)
        col_index += 1 # Increment column index to place the next video in the next column

@st.cache_resource
def display_images_and_wikipedia_summaries(num_columns=4):
    image_files = [f for f in os.listdir('.') if f.endswith('.png')]
    if not image_files:
        st.write("No PNG images found in the current directory.")
        return
    image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0]))
    cols = st.columns(num_columns) # Use specified num_columns for layout
    col_index = 0 # Initialize column index for cycling through columns
    for image_file in image_files_sorted:
        with cols[col_index % num_columns]: # Cycle through columns based on num_columns
            image = Image.open(image_file)
            st.image(image, caption=image_file, use_column_width=True)
            k = image_file.split('.')[0] # Assumes keyword is the file name without extension
            #display_glossary_entity(k)
        col_index += 1 # Increment to move to the next column in the next iteration

def main():
    st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video")
    option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
    if option == "Text":
        text_input = st.chat_input("Enter your text:")
        if text_input:
            process_text(text_input)
    elif option == "Image":
        image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
        process_image(image_input)
    elif option == "Audio":
        audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
        process_audio(audio_input)
    elif option == "Video":
        video_input = st.file_uploader("Upload a video file", type=["mp4"])
        process_audio_and_video(video_input)

    all_files = sorted(glob.glob("*.md"), key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
    all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]
    st.sidebar.title("File Gallery")
    for file in all_files:
        with st.sidebar.expander(file), open(file, "r", encoding="utf-8") as f:
            st.code(f.read(), language="markdown")

    if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.markdown(prompt)
        with st.chat_message("assistant"):
            completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
            response = process_text2(text_input=prompt)
        st.session_state.messages.append({"role": "assistant", "content": response})

    filename = save_and_play_audio(audio_recorder)
    if filename is not None:
        transcript = transcribe_canary(filename)
        result = search_arxiv(transcript)
        st.session_state.messages.append({"role": "user", "content": transcript})
        with st.chat_message("user"):
            st.markdown(transcript)
        with st.chat_message("assistant"):
            completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
            response = process_text2(text_input=prompt)
        st.session_state.messages.append({"role": "assistant", "content": response})

    # Image and Video Galleries
    num_columns_images=st.slider(key="num_columns_images", label="Choose Number of Image Columns", min_value=1, max_value=15, value=5)
    display_images_and_wikipedia_summaries(num_columns_images) # Image Jump Grid

    num_columns_video=st.slider(key="num_columns_video", label="Choose Number of Video Columns", min_value=1, max_value=15, value=5)
    display_videos_and_links(num_columns_video) # Video Jump Grid

if __name__ == "__main__":
    main()