#!/usr/bin/env python3 import os import re import glob import json import base64 import zipfile import random import requests import openai from PIL import Image from urllib.parse import quote import streamlit as st import streamlit.components.v1 as components # (Optional) If you use huggingface_hub: from huggingface_hub import InferenceClient # ---------------------------- # Placeholder data structures # ---------------------------- PromptPrefix = "AI-Search: " PromptPrefix2 = "AI-Refine: " PromptPrefix3 = "AI-JS: " roleplaying_glossary = { "Core Rulebooks": { "Dungeons and Dragons": ["Player's Handbook", "Dungeon Master's Guide", "Monster Manual"], "GURPS": ["Basic Set Characters", "Basic Set Campaigns"] }, "Campaigns & Adventures": { "Pathfinder": ["Rise of the Runelords", "Curse of the Crimson Throne"] } } transhuman_glossary = { "Neural Interfaces": ["Cortex Jack", "Mind-Machine Fusion"], "Cybernetics": ["Robotic Limbs", "Augmented Eyes"], } # ------------------------------------------ # Example stubs for placeholders # ------------------------------------------ def process_text(text): st.write(f"process_text called with: {text}") def process_text2(text_input): return f"[process_text2 placeholder] Received: {text_input}" def search_arxiv(text): st.write(f"search_arxiv called with: {text}") def SpeechSynthesis(text): st.write(f"SpeechSynthesis called with: {text}") def process_image(image_file, prompt): return f"[process_image placeholder] Processing {image_file} with prompt: {prompt}" def process_video(video_file, seconds_per_frame): st.write(f"[process_video placeholder] Video: {video_file}, seconds/frame: {seconds_per_frame}") def search_glossary(content): st.write(f"search_glossary called with: {content}") # If you have HF Inference endpoints, placeholders here API_URL = "https://huggingface-inference-endpoint-placeholder" API_KEY = "hf_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" @st.cache_resource def InferenceLLM(prompt): return f"[InferenceLLM placeholder response to prompt: {prompt}]" # -------------------------------------- # Display Entities & Glossary Functions # -------------------------------------- @st.cache_resource def display_glossary_entity(k): """ Creates multiple links (emojis) for a single entity. """ search_urls = { "๐Ÿš€๐ŸŒŒArXiv": lambda k: f"/?q={quote(k)}", "๐ŸƒAnalyst": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix)}", "๐Ÿ“šPyCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix2)}", "๐Ÿ”ฌJSCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix3)}", "๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", "๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}", "๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}", "๐ŸŽฅ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", "๐Ÿฆ": lambda k: f"https://twitter.com/search?q={quote(k)}", } links_md = ' '.join([f"[{emoji}]({url(k)})" for emoji, url in search_urls.items()]) st.markdown(f"**{k}** {links_md}", unsafe_allow_html=True) @st.cache_resource def display_glossary_grid(roleplaying_glossary): """ Displays a glossary in columns with multiple link emojis. """ search_urls = { "๐Ÿš€๐ŸŒŒArXiv": lambda k: f"/?q={quote(k)}", "๐ŸƒAnalyst": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix)}", "๐Ÿ“šPyCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix2)}", "๐Ÿ”ฌJSCoder": lambda k: f"/?q={quote(k)}-{quote(PromptPrefix3)}", "๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", "๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}", "๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}", "๐ŸŽฅ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", "๐Ÿฆ": lambda k: f"https://twitter.com/search?q={quote(k)}", } for category, details in roleplaying_glossary.items(): st.write(f"### {category}") cols = st.columns(len(details)) for idx, (game, terms) in enumerate(details.items()): with cols[idx]: st.markdown(f"#### {game}") for term in terms: links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) st.markdown(f"**{term}** {links_md}", unsafe_allow_html=True) # -------------------- # File-Handling Logic # -------------------- def load_file(file_path): try: with open(file_path, "r", encoding='utf-8') as f: return f.read() except: return "" @st.cache_resource def create_zip_of_files(files): zip_name = "Arxiv-Paper-Search-QA-RAG-Streamlit-Gradio-AP.zip" with zipfile.ZipFile(zip_name, 'w') as zipf: for file in files: zipf.write(file) return zip_name @st.cache_resource def get_zip_download_link(zip_file): with open(zip_file, 'rb') as f: data = f.read() b64 = base64.b64encode(data).decode() return f'Download All' def get_table_download_link(file_path): """ Creates a download link for a single file from your snippet. """ try: with open(file_path, 'r', encoding='utf-8') as file: data = file.read() b64 = base64.b64encode(data.encode()).decode() file_name = os.path.basename(file_path) ext = os.path.splitext(file_name)[1] mime_map = { '.txt': 'text/plain', '.py': 'text/plain', '.xlsx': 'text/plain', '.csv': 'text/plain', '.htm': 'text/html', '.md': 'text/markdown', '.wav': 'audio/wav' } mime_type = mime_map.get(ext, 'application/octet-stream') return f'{file_name}' except: return '' def get_file_size(file_path): return os.path.getsize(file_path) def compare_and_delete_files(files): """ Compare file sizes. If duplicates exist, keep only the latest. """ if not files: st.warning("No files to compare.") return file_sizes = {} for file in files: size = os.path.getsize(file) file_sizes.setdefault(size, []).append(file) # Remove all but the latest file for each size group for size, paths in file_sizes.items(): if len(paths) > 1: latest_file = max(paths, key=os.path.getmtime) for file in paths: if file != latest_file: os.remove(file) st.success(f"Deleted {file} as a duplicate.") def FileSidebar(): """ Renders the file sidebar with all the open/view/run/delete logic. """ all_files = glob.glob("*.md") # Filter out short-named or undesired files, if needed: all_files = [f for f in all_files if len(os.path.splitext(f)[0]) >= 5] all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # "Delete All" and "Download" buttons Files1, Files2 = st.sidebar.columns(2) with Files1: if st.button("๐Ÿ—‘ Delete All"): for file in all_files: os.remove(file) st.experimental_rerun() # or remove if you prefer no rerun with Files2: if st.button("โฌ‡๏ธ Download"): zip_file = create_zip_of_files(all_files) st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) file_contents = '' file_name = '' next_action = '' for file in all_files: col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) with col1: if st.button("๐ŸŒ", key="md_"+file): file_contents = load_file(file) file_name = file next_action = 'md' st.session_state['next_action'] = next_action with col2: st.markdown(get_table_download_link(file), unsafe_allow_html=True) with col3: if st.button("๐Ÿ“‚", key="open_"+file): file_contents = load_file(file) file_name = file next_action = 'open' st.session_state['lastfilename'] = file st.session_state['filename'] = file st.session_state['filetext'] = file_contents st.session_state['next_action'] = next_action with col4: if st.button("โ–ถ๏ธ", key="read_"+file): file_contents = load_file(file) file_name = file next_action = 'search' st.session_state['next_action'] = next_action with col5: if st.button("๐Ÿ—‘", key="delete_"+file): os.remove(file) st.experimental_rerun() # or remove if no rerun needed # Optional: show file sizes file_sizes = [get_file_size(file) for file in all_files] previous_size = None st.sidebar.title("File Operations") for file, size in zip(all_files, file_sizes): duplicate_flag = "๐Ÿšฉ" if size == previous_size else "" with st.sidebar.expander(f"File: {file} {duplicate_flag}"): st.text(f"Size: {size} bytes") if st.button("View", key=f"view_{file}"): try: with open(file, "r", encoding='utf-8') as f: file_content = f.read() st.code(file_content, language="markdown") except UnicodeDecodeError: st.error("Failed to decode file with UTF-8.") if st.button("Delete", key=f"delete3_{file}"): os.remove(file) st.experimental_rerun() previous_size = size # If we've loaded content from a file if file_contents: if next_action == 'open': open1, open2 = st.columns([0.8, 0.2]) with open1: file_name_input = st.text_input('File Name:', file_name, key='file_name_input') file_content_area = st.text_area('File Contents:', file_contents, height=300, key='file_content_area') if st.button('๐Ÿ’พ Save File'): with open(file_name_input, 'w', encoding='utf-8') as f: f.write(file_content_area) st.markdown(f'Saved {file_name_input} successfully.') elif next_action == 'search': file_content_area = st.text_area("File Contents:", file_contents, height=500) user_prompt = PromptPrefix2 + file_contents st.markdown(user_prompt) if st.button('๐Ÿ”Re-Code'): search_arxiv(file_contents) elif next_action == 'md': st.markdown(file_contents) SpeechSynthesis(file_contents) if st.button('๐Ÿ”Run'): st.write("Running GPT logic placeholder...") # ------------------------------------------- # Basic Scoring / Glossaries # ------------------------------------------- score_dir = "scores" os.makedirs(score_dir, exist_ok=True) def generate_key(label, header, idx): return f"{header}_{label}_{idx}_key" def update_score(key, increment=1): score_file = os.path.join(score_dir, f"{key}.json") if os.path.exists(score_file): with open(score_file, "r") as file: score_data = json.load(file) else: score_data = {"clicks": 0, "score": 0} score_data["clicks"] += increment score_data["score"] += increment with open(score_file, "w") as file: json.dump(score_data, file) return score_data["score"] def load_score(key): score_file = os.path.join(score_dir, f"{key}.json") if os.path.exists(score_file): with open(score_file, "r") as file: score_data = json.load(file) return score_data["score"] return 0 def display_buttons_with_scores(num_columns_text): """ Show buttons that track a 'score' from your glossary data. """ game_emojis = { "Dungeons and Dragons": "๐Ÿ‰", "Call of Cthulhu": "๐Ÿ™", "GURPS": "๐ŸŽฒ", "Pathfinder": "๐Ÿ—บ๏ธ", "Kindred of the East": "๐ŸŒ…", "Changeling": "๐Ÿƒ", } topic_emojis = { "Core Rulebooks": "๐Ÿ“š", "Maps & Settings": "๐Ÿ—บ๏ธ", "Game Mechanics & Tools": "โš™๏ธ", "Monsters & Adversaries": "๐Ÿ‘น", "Campaigns & Adventures": "๐Ÿ“œ", "Creatives & Assets": "๐ŸŽจ", "Game Master Resources": "๐Ÿ› ๏ธ", "Lore & Background": "๐Ÿ“–", "Character Development": "๐Ÿง", "Homebrew Content": "๐Ÿ”ง", "General Topics": "๐ŸŒ", } for category, games in roleplaying_glossary.items(): category_emoji = topic_emojis.get(category, "๐Ÿ”") st.markdown(f"## {category_emoji} {category}") for game, terms in games.items(): game_emoji = game_emojis.get(game, "๐ŸŽฎ") for term in terms: key = f"{category}_{game}_{term}".replace(' ', '_').lower() score = load_score(key) if st.button(f"{game_emoji} {category} {game} {term} {score}", key=key): newscore = update_score(key.replace('?','')) st.markdown(f"Scored **{category} - {game} - {term}** -> {newscore}") # -------------------------------------- # Image & Video Grids # -------------------------------------- def display_images_and_wikipedia_summaries(num_columns=4): """ Display .png images in a grid with text input prompts. """ image_files = [f for f in os.listdir('.') if f.endswith('.png')] if not image_files: st.write("No PNG images found in the current directory.") return image_files_sorted = sorted(image_files, key=lambda x: len(x.split('.')[0])) cols = st.columns(num_columns) col_index = 0 for image_file in image_files_sorted: with cols[col_index % num_columns]: try: image = Image.open(image_file) st.image(image, use_column_width=True) k = image_file.split('.')[0] display_glossary_entity(k) # Provide a text input for user interactions image_text_input = st.text_input(f"Prompt for {image_file}", key=f"image_prompt_{image_file}") if image_text_input: response = process_image(image_file, image_text_input) st.markdown(response) except: st.write(f"Could not open {image_file}") col_index += 1 def display_videos_and_links(num_columns=4): """ Displays all .mp4/.webm videos in the directory in a grid, with text input prompts. """ video_files = [f for f in os.listdir('.') if f.endswith(('.mp4', '.webm'))] if not video_files: st.write("No MP4 or WEBM videos found in the current directory.") return video_files_sorted = sorted(video_files, key=lambda x: len(x.split('.')[0])) cols = st.columns(num_columns) col_index = 0 for video_file in video_files_sorted: with cols[col_index % num_columns]: k = video_file.split('.')[0] st.video(video_file, format='video/mp4', start_time=0) display_glossary_entity(k) video_text_input = st.text_input(f"Video Prompt for {video_file}", key=f"video_prompt_{video_file}") if video_text_input: try: # For demonstration seconds_per_frame = 10 process_video(video_file, seconds_per_frame) except ValueError: st.error("Invalid input for seconds per frame!") col_index += 1 # -------------------------------------- # Query Param Helpers (No experimental) # -------------------------------------- def clear_query_params(): """ In Streamlit, there's no direct method to "clear" query params without rewriting the URL. One workaround is to do: st.experimental_set_query_params() # with no arguments But if you want to avoid *all* experimental calls, you can provide a link or button that leads to a new URL without params. """ st.warning("Use a redirect or link that excludes query parameters.") def display_content_or_image(query): """ If a query matches transhuman_glossary or a local image, display it. """ for category, term_list in transhuman_glossary.items(): for term in term_list: if query.lower() in term.lower(): st.subheader(f"Found in {category}:") st.write(term) return True image_path = f"images/{query}.png" if os.path.exists(image_path): st.image(image_path, caption=f"Image for {query}") return True st.warning("No matching content or image found.") return False # ------------------------------------ # MERMAID DIAGRAM with Clickable Nodes # ------------------------------------ def generate_mermaid_html(mermaid_code: str) -> str: """ Embeds a mermaid diagram in HTML, centered. """ return f"""
{mermaid_code}
""" def append_model_param(url: str, model_selected: bool) -> str: """ If 'model=1' is desired, we append it to each URL in the diagram. """ if not model_selected: return url delimiter = "&" if "?" in url else "?" return f"{url}{delimiter}model=1" DEFAULT_MERMAID = """ flowchart LR U((User ๐Ÿ˜Ž)) -- "Talk ๐Ÿ—ฃ๏ธ" --> LLM[LLM Agent ๐Ÿค–\\nExtract Info] click U "/?q=User%20๐Ÿ˜Ž" _self click LLM "/?q=LLM%20Agent%20Extract%20Info" _self LLM -- "Query ๐Ÿ”" --> HS[Hybrid Search ๐Ÿ”Ž\\nVector+NER+Lexical] click HS "/?q=Hybrid%20Search%20Vector+NER+Lexical" _self HS -- "Reason ๐Ÿค”" --> RE[Reasoning Engine ๐Ÿ› ๏ธ\\nNeuralNetwork+Medical] click RE "/?q=Reasoning%20Engine%20NeuralNetwork+Medical" _self RE -- "Link ๐Ÿ“ก" --> KG((Knowledge Graph ๐Ÿ“š\\nOntology+GAR+RAG)) click KG "/?q=Knowledge%20Graph%20Ontology+GAR+RAG" _self """ # --------------------------- # Main Streamlit App # --------------------------- def main(): st.set_page_config(page_title="Mermaid + Clickable Links Demo", layout="wide") # --------------------------------------------- # Query Parameter Parsing (No experimental usage) # --------------------------------------------- try: query_params = st.query_params # Look for 'q' or 'query' query_list = (query_params.get('q') or query_params.get('query') or ['']) q_or_query = query_list[0] if len(query_list) > 0 else '' if q_or_query.strip(): filesearch = PromptPrefix + q_or_query st.markdown(filesearch) process_text(filesearch) except Exception as e: st.markdown(" ") # do nothing if there's an error # If 'action' in st.query_params if 'action' in st.query_params: action_list = st.query_params['action'] if action_list: action = action_list[0] if action == 'show_message': st.success("Showing a message because 'action=show_message' was found in the URL.") elif action == 'clear': clear_query_params() # If you wanted a full rerun with no params, you'd do a redirect or # st.experimental_set_query_params() with no arguments (but that's experimental). # If 'query' param is present, show content or image if 'query' in st.query_params: query_list2 = st.query_params['query'] if query_list2 and len(query_list2) > 0: query_val = query_list2[0] display_content_or_image(query_val) # --------------------------------------------- # Let user pick if they want to add ?model=1 # --------------------------------------------- st.sidebar.write("## Diagram Link Settings") model_selected = st.sidebar.checkbox("Append ?model=1 to each link?") # Rebuild the dynamic Mermaid code base_diagram = DEFAULT_MERMAID lines = base_diagram.strip().split("\n") new_lines = [] for line in lines: if "click " in line and '"/?' in line: # e.g. click U "/?q=User" _self parts = re.split(r'click\s+\S+\s+"([^"]+)"\s+("_self")', line) if len(parts) == 4: url = parts[1] updated_url = append_model_param(url, model_selected) new_line = f"{parts[0]}\"{updated_url}\" {parts[2]}" new_lines.append(new_line) else: new_lines.append(line) else: new_lines.append(line) mermaid_code = "\n".join(new_lines) # --------------------------------------------- # Render top-centered Mermaid diagram # --------------------------------------------- st.title("Top-Centered Mermaid Diagram with Clickable Links ๐Ÿบ") diagram_html = generate_mermaid_html(mermaid_code) components.html(diagram_html, height=400, scrolling=True) # --------------------------------------------- # Two-column layout: Markdown & Mermaid Editors # --------------------------------------------- left_col, right_col = st.columns(2) # --- Left: Markdown Editor with left_col: st.subheader("Markdown Side ๐Ÿ“") if "markdown_text" not in st.session_state: st.session_state["markdown_text"] = "## Hello!\nType some *Markdown* here.\n" markdown_text = st.text_area( "Edit Markdown:", value=st.session_state["markdown_text"], height=300 ) st.session_state["markdown_text"] = markdown_text colA, colB = st.columns(2) with colA: if st.button("๐Ÿ”„ Refresh Markdown"): st.write("**Markdown** content refreshed! ๐Ÿฟ") with colB: if st.button("โŒ Clear Markdown"): st.session_state["markdown_text"] = "" st.rerun() # non-experimental re-run if available in your Streamlit version st.markdown("---") st.markdown("**Preview:**") st.markdown(markdown_text) # --- Right: Mermaid Editor with right_col: st.subheader("Mermaid Side ๐Ÿงœโ€โ™‚๏ธ") if "current_mermaid" not in st.session_state: st.session_state["current_mermaid"] = mermaid_code mermaid_input = st.text_area( "Edit Mermaid Code:", value=st.session_state["current_mermaid"], height=300 ) colC, colD = st.columns(2) with colC: if st.button("๐ŸŽจ Refresh Diagram"): st.session_state["current_mermaid"] = mermaid_input st.write("**Mermaid** diagram refreshed! ๐ŸŒˆ") st.rerun() with colD: if st.button("โŒ Clear Mermaid"): st.session_state["current_mermaid"] = "" st.rerun() st.markdown("---") st.markdown("**Mermaid Source:**") st.code(mermaid_input, language="python", line_numbers=True) # --------------------------------------------- # Media Galleries # --------------------------------------------- st.markdown("---") st.header("Media Galleries") num_columns_images = st.slider("Choose Number of Image Columns", 1, 15, 5, key="num_columns_images") display_images_and_wikipedia_summaries(num_columns_images) num_columns_video = st.slider("Choose Number of Video Columns", 1, 15, 5, key="num_columns_video") display_videos_and_links(num_columns_video) # --------------------------------------------- # Optional Extended UI # --------------------------------------------- showExtendedTextInterface = False if showExtendedTextInterface: display_glossary_grid(roleplaying_glossary) num_columns_text = st.slider("Choose Number of Text Columns", 1, 15, 4, key="num_columns_text") display_buttons_with_scores(num_columns_text) st.markdown("Extended text interface is on...") # --------------------------------------------- # File Sidebar # --------------------------------------------- FileSidebar() # --------------------------------------------- # Random Title at the bottom # --------------------------------------------- titles = [ "๐Ÿง ๐ŸŽญ Semantic Symphonies & Episodic Encores", "๐ŸŒŒ๐ŸŽผ AI Rhythms of Memory Lane", "๐ŸŽญ๐ŸŽ‰ Cognitive Crescendos & Neural Harmonies", "๐Ÿง ๐ŸŽบ Mnemonic Melodies & Synaptic Grooves", "๐ŸŽผ๐ŸŽธ Straight Outta Cognition", "๐Ÿฅ๐ŸŽป Jazzy Jambalaya of AI Memories", "๐Ÿฐ Semantic Soul & Episodic Essence", "๐Ÿฅ๐ŸŽป The Music Of AI's Mind" ] selected_title = random.choice(titles) st.markdown(f"**{selected_title}**") if __name__ == "__main__": main()