Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -309,92 +309,80 @@ def parse_arxiv_refs(ref_text: str):
|
|
309 |
Returns list of dicts with paper details, limited to 20 papers.
|
310 |
Returns empty list if parsing fails.
|
311 |
"""
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
# Split on the paper header pattern
|
316 |
-
papers = re.split(r'\*\*.*?\|\s*.*?\|\s*.*?\*\*', ref_text)
|
317 |
-
headers = re.findall(r'\*\*.*?\|\s*.*?\|\s*.*?\*\*', ref_text)
|
318 |
-
|
319 |
-
results = []
|
320 |
-
for i, (header, content) in enumerate(zip(headers, papers[1:])):
|
321 |
-
if i >= 20: # Limit to 20 papers
|
322 |
-
break
|
323 |
-
|
324 |
-
# Parse header parts
|
325 |
-
header_parts = [p.strip() for p in header.strip('*').split('|')]
|
326 |
-
if len(header_parts) >= 2:
|
327 |
-
date_str = header_parts[0].strip()
|
328 |
-
title = header_parts[1].strip()
|
329 |
-
|
330 |
-
# Parse content into authors and summary
|
331 |
-
content_parts = content.strip().split('\n', 1)
|
332 |
-
authors = content_parts[0].strip('*') if content_parts else ""
|
333 |
-
summary = content_parts[1].strip() if len(content_parts) > 1 else ""
|
334 |
-
|
335 |
-
# Extract year from date
|
336 |
-
year_match = re.search(r'20\d{2}', date_str)
|
337 |
-
year = int(year_match.group(0)) if year_match else None
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
|
348 |
titles_summary=True, full_audio=False):
|
349 |
"""Perform Arxiv search and generate audio summaries."""
|
350 |
start = time.time()
|
351 |
|
352 |
-
#
|
353 |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
354 |
refs = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")[0]
|
355 |
r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm")
|
356 |
|
357 |
-
#
|
358 |
result = f"### 🔎 {q}\n\n{r2}\n\n{refs}"
|
359 |
st.markdown(result)
|
360 |
|
361 |
-
#
|
362 |
-
if full_audio:
|
363 |
-
complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}"
|
364 |
-
audio_file_full = speak_with_edge_tts(complete_text)
|
365 |
-
st.write("### 📚 Full Audio")
|
366 |
-
play_and_download_audio(audio_file_full)
|
367 |
-
|
368 |
-
if vocal_summary:
|
369 |
-
main_text = clean_for_speech(r2)
|
370 |
-
audio_file_main = speak_with_edge_tts(main_text)
|
371 |
-
st.write("### 🎙 Short Audio")
|
372 |
-
play_and_download_audio(audio_file_main)
|
373 |
-
|
374 |
-
if extended_refs:
|
375 |
-
summaries_text = "Extended references: " + refs.replace('"','')
|
376 |
-
summaries_text = clean_for_speech(summaries_text)
|
377 |
-
audio_file_refs = speak_with_edge_tts(summaries_text)
|
378 |
-
st.write("### 📜 Long Refs")
|
379 |
-
play_and_download_audio(audio_file_refs)
|
380 |
-
|
381 |
-
# --------------------------------------
|
382 |
-
# NEW: Parse references, show sorted list
|
383 |
-
# --------------------------------------
|
384 |
parsed_refs = parse_arxiv_refs(refs)
|
|
|
|
|
|
|
|
|
385 |
|
386 |
-
#
|
387 |
-
|
388 |
-
# parsed_refs = [r for r in parsed_refs if (r["year"] is not None and r["year"] >= 2022)]
|
389 |
-
parsed_refs.sort(key=lambda x: x["year"] if x["year"] else 0, reverse=True)
|
390 |
-
|
391 |
-
st.write("## Individual Papers (Most Recent First)")
|
392 |
for idx, paper in enumerate(parsed_refs):
|
393 |
-
|
394 |
-
st.markdown(f"
|
395 |
-
st.markdown(
|
396 |
|
397 |
-
#
|
398 |
colA, colB = st.columns(2)
|
399 |
with colA:
|
400 |
if st.button(f"🔊 Title", key=f"title_{idx}"):
|
@@ -403,34 +391,17 @@ def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
|
|
403 |
play_and_download_audio(audio_file_title)
|
404 |
|
405 |
with colB:
|
406 |
-
if st.button(f"🔊
|
407 |
-
text_tts = clean_for_speech(paper['title']
|
408 |
audio_file_title_summary = speak_with_edge_tts(text_tts)
|
409 |
play_and_download_audio(audio_file_title_summary)
|
410 |
|
411 |
st.write("---")
|
412 |
|
413 |
-
#
|
414 |
-
if titles_summary:
|
415 |
-
# This is your existing code block
|
416 |
-
titles = []
|
417 |
-
for line in refs.split('\n'):
|
418 |
-
m = re.search(r"\[([^\]]+)\]", line)
|
419 |
-
if m:
|
420 |
-
titles.append(m.group(1))
|
421 |
-
if titles:
|
422 |
-
titles_text = "Titles: " + ", ".join(titles)
|
423 |
-
titles_text = clean_for_speech(titles_text)
|
424 |
-
audio_file_titles = speak_with_edge_tts(titles_text)
|
425 |
-
st.write("### 🔖 Titles (All-In-One)")
|
426 |
-
play_and_download_audio(audio_file_titles)
|
427 |
-
|
428 |
elapsed = time.time()-start
|
429 |
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
|
430 |
-
|
431 |
-
# Always create a file with the result
|
432 |
create_file(q, result, "md")
|
433 |
-
|
434 |
return result
|
435 |
|
436 |
def process_with_gpt(text):
|
|
|
309 |
Returns list of dicts with paper details, limited to 20 papers.
|
310 |
Returns empty list if parsing fails.
|
311 |
"""
|
312 |
+
try:
|
313 |
+
if not ref_text:
|
314 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
+
# Split on the paper header pattern
|
317 |
+
papers = re.split(r'\*\*.*?\|\s*.*?\|\s*.*?\*\*', ref_text)
|
318 |
+
headers = re.findall(r'\*\*.*?\|\s*.*?\|\s*.*?\*\*', ref_text)
|
319 |
+
|
320 |
+
results = []
|
321 |
+
for i, (header, content) in enumerate(zip(headers, papers[1:])):
|
322 |
+
if i >= 20: # Limit to 20 papers
|
323 |
+
break
|
324 |
+
|
325 |
+
try:
|
326 |
+
# Parse header parts
|
327 |
+
header_parts = [p.strip() for p in header.strip('*').split('|')]
|
328 |
+
if len(header_parts) >= 2:
|
329 |
+
date_str = header_parts[0].strip()
|
330 |
+
title = header_parts[1].strip()
|
331 |
+
|
332 |
+
# Parse content into authors and summary
|
333 |
+
content_parts = content.strip().split('\n', 1)
|
334 |
+
authors = content_parts[0].strip('*') if content_parts else ""
|
335 |
+
summary = content_parts[1].strip() if len(content_parts) > 1 else ""
|
336 |
+
|
337 |
+
# Extract year from date
|
338 |
+
year_match = re.search(r'20\d{2}', date_str)
|
339 |
+
year = int(year_match.group(0)) if year_match else None
|
340 |
+
|
341 |
+
results.append({
|
342 |
+
'title': title,
|
343 |
+
'summary': summary,
|
344 |
+
'authors': authors,
|
345 |
+
'year': year,
|
346 |
+
'date': date_str
|
347 |
+
})
|
348 |
+
except Exception as e:
|
349 |
+
st.warning(f"Error parsing paper {i+1}: {str(e)}")
|
350 |
+
continue
|
351 |
+
|
352 |
+
return results
|
353 |
+
except Exception as e:
|
354 |
+
st.error(f"Error parsing papers: {str(e)}")
|
355 |
+
return []
|
356 |
|
357 |
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
|
358 |
titles_summary=True, full_audio=False):
|
359 |
"""Perform Arxiv search and generate audio summaries."""
|
360 |
start = time.time()
|
361 |
|
362 |
+
# Query the HF RAG pipeline
|
363 |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
364 |
refs = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")[0]
|
365 |
r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm")
|
366 |
|
367 |
+
# Combine for final text output
|
368 |
result = f"### 🔎 {q}\n\n{r2}\n\n{refs}"
|
369 |
st.markdown(result)
|
370 |
|
371 |
+
# Parse references
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
parsed_refs = parse_arxiv_refs(refs)
|
373 |
+
|
374 |
+
# Sort only if we have results
|
375 |
+
if parsed_refs:
|
376 |
+
parsed_refs.sort(key=lambda x: x.get("year", 0) if x.get("year") else 0, reverse=True)
|
377 |
|
378 |
+
# Display papers
|
379 |
+
st.write("## Research Papers")
|
|
|
|
|
|
|
|
|
380 |
for idx, paper in enumerate(parsed_refs):
|
381 |
+
st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**")
|
382 |
+
st.markdown(f"*{paper['authors']}*")
|
383 |
+
st.markdown(paper['summary'])
|
384 |
|
385 |
+
# Audio controls
|
386 |
colA, colB = st.columns(2)
|
387 |
with colA:
|
388 |
if st.button(f"🔊 Title", key=f"title_{idx}"):
|
|
|
391 |
play_and_download_audio(audio_file_title)
|
392 |
|
393 |
with colB:
|
394 |
+
if st.button(f"🔊 Full Details", key=f"summary_{idx}"):
|
395 |
+
text_tts = clean_for_speech(f"{paper['title']} by {paper['authors']}. {paper['summary']}")
|
396 |
audio_file_title_summary = speak_with_edge_tts(text_tts)
|
397 |
play_and_download_audio(audio_file_title_summary)
|
398 |
|
399 |
st.write("---")
|
400 |
|
401 |
+
# Rest of your existing function...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
elapsed = time.time()-start
|
403 |
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
|
|
|
|
|
404 |
create_file(q, result, "md")
|
|
|
405 |
return result
|
406 |
|
407 |
def process_with_gpt(text):
|