Spaces:
Runtime error
Runtime error
File size: 13,195 Bytes
475285f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import gradio as gr
import pandas as pd
import json
from collections import defaultdict
# Create tokenizer for biomed model
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all") # https://huggingface.co/d4data/biomedical-ner-all?text=asthma
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
# Matplotlib for entity graph
import matplotlib.pyplot as plt
plt.switch_backend("Agg")
# Load examples from JSON
import os
# Load terminology datasets:
basedir = os.path.dirname(__file__)
dataLOINC = pd.read_csv(basedir + "\\" + f'LoincTableCore.csv')
dataPanels = pd.read_csv(basedir + "\\" + f'PanelsAndForms-ACW1208Labeled.csv')
dataSNOMED = pd.read_csv(basedir + "\\" + f'sct2_TextDefinition_Full-en_US1000124_20220901.txt',sep='\t')
dataOMS = pd.read_csv(basedir + "\\" + f'SnomedOMS.csv')
dataICD10 = pd.read_csv(basedir + "\\" + f'ICD10Diagnosis.csv')
dir_path = os.path.dirname(os.path.realpath(__file__))
EXAMPLES = {}
with open(dir_path + "\\" + "examples.json", "r") as f:
example_json = json.load(f)
EXAMPLES = {x["text"]: x["label"] for x in example_json}
def MatchLOINC(name):
#basedir = os.path.dirname(__file__)
pd.set_option("display.max_rows", None)
#data = pd.read_csv(basedir + "\\" + f'LoincTableCore.csv')
data = dataLOINC
swith=data.loc[data['COMPONENT'].str.contains(name, case=False, na=False)]
return swith
def MatchLOINCPanelsandForms(name):
#basedir = os.path.dirname(__file__)
#data = pd.read_csv(basedir + "\\" + f'PanelsAndForms-ACW1208Labeled.csv')
data = dataPanels
# Assessment Name:
#swith=data.loc[data['ParentName'].str.contains(name, case=False, na=False)]
# Assessment Question:
swith=data.loc[data['LoincName'].str.contains(name, case=False, na=False)]
return swith
def MatchSNOMED(name):
#basedir = os.path.dirname(__file__)
#data = pd.read_csv(basedir + "\\" + f'sct2_TextDefinition_Full-en_US1000124_20220901.txt',sep='\t')
data = dataSNOMED
swith=data.loc[data['term'].str.contains(name, case=False, na=False)]
return swith
def MatchOMS(name):
#basedir = os.path.dirname(__file__)
#data = pd.read_csv(basedir + "\\" + f'SnomedOMS.csv')
data = dataOMS
swith=data.loc[data['SNOMED CT'].str.contains(name, case=False, na=False)]
return swith
def MatchICD10(name):
#basedir = os.path.dirname(__file__)
#data = pd.read_csv(basedir + "\\" + f'ICD10Diagnosis.csv')
data = dataICD10
swith=data.loc[data['Description'].str.contains(name, case=False, na=False)]
return swith
def SaveResult(text, outputfileName):
#try:
basedir = os.path.dirname(__file__)
savePath = outputfileName
print("Saving: " + text + " to " + savePath)
from os.path import exists
file_exists = exists(savePath)
if file_exists:
with open(outputfileName, "a") as f: #append
#for line in text:
f.write(str(text.replace("\n"," ")))
f.write('\n')
else:
with open(outputfileName, "w") as f: #write
#for line in text:
f.write(str(text.replace("\n"," ")))
f.write('\n')
#except ValueError as err:
# raise ValueError("File Save Error in SaveResult \n" + format_tb(err.__traceback__)[0] + err.args[0] + "\nEnd of error message.") from None
return
def loadFile(filename):
try:
basedir = os.path.dirname(__file__)
loadPath = basedir + "\\" + filename
print("Loading: " + loadPath)
from os.path import exists
file_exists = exists(loadPath)
if file_exists:
with open(loadPath, "r") as f: #read
contents = f.read()
print(contents)
return contents
except ValueError as err:
raise ValueError("File Save Error in SaveResult \n" + format_tb(err.__traceback__)[0] + err.args[0] + "\nEnd of error message.") from None
return ""
def get_today_filename():
from datetime import datetime
date = datetime.now().strftime("%Y_%m_%d-%I.%M.%S.%p")
#print(f"filename_{date}") 'filename_2023_01_12-03-29-22_AM'
return f"MedNER_{date}.csv"
def get_base(filename):
basedir = os.path.dirname(__file__)
loadPath = basedir + "\\" + filename
#print("Loading: " + loadPath)
return loadPath
def group_by_entity(raw):
outputFile = get_base(get_today_filename())
out = defaultdict(int)
for ent in raw:
out[ent["entity_group"]] += 1
myEntityGroup = ent["entity_group"]
print("Found entity group type: " + myEntityGroup)
if (myEntityGroup in ['Sign_symptom', 'Detailed_description', 'History', 'Activity', 'Medication' ]):
eterm = ent["word"].replace('#','')
minlength = 3
if len(eterm) > minlength:
print("Found eterm: " + eterm)
eterm.replace("#","")
g1=MatchLOINC(eterm)
g2=MatchLOINCPanelsandForms(eterm)
g3=MatchSNOMED(eterm)
g4=MatchOMS(eterm)
g5=MatchICD10(eterm)
sAll = ""
print("Saving to output file " + outputFile)
# Create harmonisation output format of input to output code, name, Text
try: # 18 fields, output to labeled CSV dataset for results teaching on scored regret changes to action plan with data inputs
col = " 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19"
#LOINC
g11 = g1['LOINC_NUM'].to_string().replace(","," ")
g12 = g1['COMPONENT'].to_string().replace(","," ")
s1 = ("LOINC Terms of entity ," + myEntityGroup + ", with term ," + eterm + ", LOINC codes of ," + g11 + ", and LOINC questions of ," + g12 + ", Label,Value, Label,Value, Label,Value ")
SaveResult(s1, outputFile)
#LOINC Panels
g21 = g2['Loinc'].to_string().replace(","," ")
g22 = g2['LoincName'].to_string().replace(","," ")
g23 = g2['ParentLoinc'].to_string().replace(","," ")
g24 = g2['ParentName'].to_string().replace(","," ")
s2 = ("LOINC Panels of entity ," + myEntityGroup + ", with term ," + eterm + ", LOINC codes of ," + g21 + ", and LOINC name of ," + g22 + ", and Parent codes of ," + g23 + ", with Parent names of ," + g24 + ", Label,Value ")
SaveResult(s2, outputFile)
#SNOMED
g31 = g3['conceptId'].to_string().replace(","," ")
g32 = g3['term'].to_string().replace(","," ")
s3 = ("SNOMED Terms of entity ," + myEntityGroup + ", with term ," + eterm + ", SNOMED concepts of ," + g31 + ", and SNOMED terms of ," + g32 + ", Label,Value, Label,Value, Label,Value ")
SaveResult(s3, outputFile)
#OMS
g41 = g4['Omaha Code'].to_string().replace(","," ")
g42 = g4['SNOMED CT concept ID'].to_string().replace(","," ")
g43 = g4['SNOMED CT'].to_string().replace(","," ")
g44 = g4['PR'].to_string().replace(","," ")
g45 = g4['S&S'].to_string().replace(","," ")
s4 = ("OMS Terms of entity ," + myEntityGroup + ", with term ," + eterm + ", Omaha codes of ," + g41 + ", and SNOMED concepts of ," + g42 + ", and SNOMED codes of ," + g43 + ", and OMS problem of ," + g44 + ", and OMS Sign Symptom of ," + g45)
if g41 != 'Series([] )': SaveResult(s4, outputFile)
#ICD10
g51 = g5['Code'].to_string().replace(","," ")
g52 = g5['Description'].to_string().replace(","," ")
s5 = ("ICD10 matches of entity ," + myEntityGroup + ", with term ," + eterm + ", ICD10 codes of ," + g51 + ", and descriptions of ," + g52 + ", Label,Value, Label,Value, Label,Value ")
if g51 != 'Series([] )':SaveResult(s5, outputFile)
except ValueError as err:
raise ValueError("Error in group by entity \n" + format_tb(err.__traceback__)[0] + err.args[0] + "\nEnd of error message.") from None
#print(sAll)
#return out;
#break;
# out["total"] = sum(out.values())
# return out
return outputFile
def plot_to_figure(grouped):
fig = plt.figure()
plt.bar(x=list(grouped.keys()), height=list(grouped.values()))
plt.margins(0.2)
plt.subplots_adjust(bottom=0.4)
plt.xticks(rotation=90)
return fig
def ner(text):
raw = pipe(text)
ner_content = {
"text": text,
"entities": [
{
"entity": x["entity_group"],
"word": x["word"],
"score": x["score"],
"start": x["start"],
"end": x["end"],
}
for x in raw
],
}
#grouped = group_by_entity(raw)
outputFile = group_by_entity(raw)
#figure = plot_to_figure(grouped)
label = EXAMPLES.get(text, "Unknown")
#meta = {
# "entity_counts": grouped,
# "entities": len(set(grouped.keys())),
# "counts": sum(grouped.values()),
# }
#return (ner_content, meta, label, figure)
outputDataframe = pd.read_csv(outputFile)
outputFile = outputFile.replace(os.path.dirname(__file__) + "\\","") # Just filename for File download UI output element
#return (ner_content, meta, label, figure, outputDataframe, outputFile)
return (ner_content, outputDataframe, outputFile)
# New way = Gradio Blocks:
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# 🩺⚕️NLP UI for AI Biomedical Entity Type Recognition with Clinical Terminology Harmonisation
"""
)
input = gr.Textbox(label="Note text", value="")
output=[
gr.HighlightedText(label="NER", combine_adjacent=True)
]
with gr.Tab("Biomedical Entity Recognition"):
output=[
gr.HighlightedText(label="NER", combine_adjacent=True),
#gr.JSON(label="Entity Counts"),
#gr.Label(label="Rating"),
#gr.Plot(label="Bar"),
gr.Dataframe(label="Dataframe"),
gr.File(label="File"),
]
examples=list(EXAMPLES.keys())
gr.Examples(examples, inputs=input)
input.change(fn=ner, inputs=input, outputs=output)
with gr.Tab("Clinical Terminology Resolution"):
#output=[
# gr.Textbox(placeholder="CT Match Results", lines=10)
#]
with gr.Row(variant="compact"):
btnLOINC = gr.Button("LOINC")
btnPanels = gr.Button("Panels")
btnSNOMED = gr.Button("SNOMED")
btnOMS = gr.Button("OMS")
btnICD10 = gr.Button("ICD10")
output=[
gr.HighlightedText(label="NER", combine_adjacent=True),
gr.File(label="File"), # add download link here
gr.Dataframe(label="Dataframe", headers=["LOINC", "Panels", "SNOMED", "OMS", "ICD10"]), # add harmonised output for input corpus here as a dataframe to UI
gr.Textbox(placeholder="CT Match Results", lines=10) # add matched text scratchpad here
]
#textCT = gr.Textbox(placeholder="CT Match Results", lines=10)
#btnLOINC.click(loadFile, inputs=["LOINCTerms.txt"], outputs=output)
#btnPanels.click(loadFile, "LOINCPanelsandForms.txt", output)
#btnSNOMED.click(loadFile, "SNOMEDTerms.txt", output)
#btnOMS.click(loadFile, "OMSTerms.txt", output)
#btnICD10.click(loadFile, "ICD10Terms.txt", output)
examples=list(EXAMPLES.keys())
gr.Examples(examples, inputs=input)
input.change(fn=ner, inputs=input, outputs=output)
#with gr.Tab("Examples Page 1"):
# gr.Examples(["a", "b", "c"], inputs=input)
#with gr.Tab("Examples Page 2"):
# gr.Examples(["d", "e", "f"], inputs=input)
#with gr.Tab("Examples Page 2"):
# gr.Examples(["g", "h", "i"], inputs=input)
demo.launch(debug=True)
# Old Way - Interface Load
#interface = gr.Interface(
# ner,
# inputs=gr.Textbox(label="Note text", value=""),
# outputs=[
# gr.HighlightedText(label="NER", combine_adjacent=True),
# gr.JSON(label="Entity Counts"),
# gr.Label(label="Rating"),
# gr.Plot(label="Bar"),
# ],
# examples=list(EXAMPLES.keys()),
# allow_flagging="never",
#)
#interface.launch() |