import streamlit as st import os import glob import re import base64 import pytz from urllib.parse import quote from gradio_client import Client from datetime import datetime # ๐ŸŒณ๐Ÿค– AIKnowledgeTreeBuilder - Because every app needs a good costume! Site_Name = 'AI Knowledge Tree Builder ๐Ÿ“ˆ๐ŸŒฟ Grow Smarter with Every Click' title = "๐ŸŒณโœจAI Knowledge Tree Builder๐Ÿ› ๏ธ๐Ÿค“" helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' icons = '๐ŸŒณโœจ๐Ÿ› ๏ธ๐Ÿค“' st.set_page_config( page_title=title, page_icon=icons, layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': helpURL, 'Report a bug': bugURL, 'About': title } ) # Initialize session state variables if 'selected_file' not in st.session_state: st.session_state.selected_file = None if 'view_mode' not in st.session_state: st.session_state.view_mode = 'view' if 'files' not in st.session_state: st.session_state.files = [] AITopicsToInnovate1=""" 1. Major AI Industry Players ๐ŸŒ 1. Research Leaders ๐ŸŽฏ - OpenAI: GPT-4 DALL-E Foundation Models ๐Ÿ”ต - Google: PaLM Gemini LLMs ๐ŸŸฆ - Anthropic: Claude Constitutional AI โšก - Meta: LLaMA Open Source LLMs ๐Ÿ‘ค - xAI: Grok Conversational AI ๐Ÿค– 2. Technical AI Development ๐Ÿ› ๏ธ 1. Architecture Advances ๐Ÿ’ซ - Transformer Models Attention Mechanisms ๐Ÿง  - Mixture of Experts MoE Architecture ๐ŸŽช - Sparse Neural Networks ๐Ÿ•ธ๏ธ - Multi-modal LLM Systems ๐ŸŒˆ - Flash Attention Optimization โš”๏ธ 2. Training Methodologies ๐Ÿ“š - LLM Supervised Fine-tuning ๐Ÿ‘จโ€๐Ÿซ - RLHF Reward Models ๐Ÿค - Constitutional AI Training ๐Ÿ“œ - RLAIF Feedback Models ๐Ÿ”„ - Synthetic Data LLM Training ๐ŸŽฒ - Chain of Thought Prompting ๐Ÿงฉ - Tree of Thoughts Reasoning ๐ŸŒณ 3. Post-Training Implementation ๐Ÿ”ง - Neural Network Distillation ๐Ÿงช - LLM Quantization Methods ๐Ÿ“Š - Neural Network Pruning โœ‚๏ธ - Knowledge Distillation Transfer ๐Ÿ“– - Few-shot LLM Learning ๐ŸŽฏ 3. Mechanistic Interpretability ๐Ÿ”ฌ 1. Core Concepts ๐Ÿ’ก - Neural Network Growth Analysis ๐ŸŒฑ - LLM Architecture Analysis ๐Ÿ—๏ธ - Training Loss Optimization ๐ŸŽจ - Neural Network Analogies ๐Ÿงฌ 2. Technical Features ๐Ÿ“ - LLM Linear Representations โžก๏ธ - Neural Vector Arithmetic ๐Ÿ”ข - Neural Activation Patterns ๐ŸŒŠ - LLM Feature Detection ๐Ÿ” - Neural Sparse Autoencoders ๐ŸŽญ 3. Network Analysis ๐Ÿ•ต๏ธ - LLM Induction Heads ๐Ÿ‘€ - Transformer Attention Analysis ๐ŸŽช - Neural Circuit Analysis ๐Ÿ”Œ - LLM Feature Visualization ๐Ÿ“ˆ - Neural Concept Directions ๐ŸŽณ 4. Future AI Developments ๐Ÿš€ 1. AGI Timeline โฐ - AGI Capability Projections ๐Ÿ“… - Neural Hardware Scaling ๐Ÿ’พ - LLM Training Data Limits ๐Ÿ“‰ - AI Compute Resources ๐Ÿ—บ๏ธ 2. Integration Fields ๐ŸŽก - AI Biology Integration ๐Ÿ”ฎ - AI Drug Discovery Systems ๐Ÿ’Š - AI Clinical Trial Analysis ๐Ÿฅ - AI Code Generation ๐Ÿคน - AI Scientific Discovery ๐Ÿงฎ 5. Industry Best Practices ๐Ÿ’Ž 1. AI Team Building ๐Ÿข - AI Talent Development ๐Ÿ‘ฅ - AI Research Alignment ๐ŸŽช - AI Team Scaling ๐Ÿ“Š - AI Research Culture ๐ŸŒŸ 2. AI Research Qualities ๐ŸŽ“ - AI Research Methodology ๐Ÿงญ - AI Experimentation Protocols ๐Ÿ—๏ธ - AI Innovation Thinking ๐Ÿ’ซ - AI Testing Framework โš–๏ธ 3. AI Safety Standards ๐Ÿ›ก๏ธ - LLM Behavioral Specifications ๐Ÿ“‹ - AI Safety Guidelines ๐ŸŽฎ - AI Ethics Framework โ›‘๏ธ - AI Industry Standards ๐Ÿคฒ 6. Emerging Research Areas ๐Ÿ”ฎ 1. Technical Focus ๐ŸŽฏ - LLM Long Context Learning โณ - LLM Multi-agent Interaction ๐Ÿ‘พ - AI Evaluation Metrics ๐Ÿ“Œ - Neural Interpretability Methods ๐Ÿ”ญ 2. AI Applications ๐Ÿ’ผ - AI Automated Research ๐Ÿงซ - AI Code Synthesis โŒจ๏ธ - AI Biological Modeling ๐Ÿงฏ - AI Medical Diagnostics ๐Ÿ’‰ 7. Model Intelligence ๐Ÿงฟ 1. LLM System Development ๐ŸŽช - LLM Prompt Engineering ๐Ÿ“ - LLM Response Generation โ™Ÿ๏ธ - LLM Behavioral Training ๐ŸŽน - LLM Personality Development ๐ŸŽช 2. LLM User Interaction ๐ŸŽญ - LLM Autonomy Alignment ๐ŸŽช - LLM Safety Boundaries ๐Ÿ”’ - LLM Communication Patterns ๐Ÿ—ฃ๏ธ - LLM Performance Tuning ๐ŸŽข """ Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds = """ # Active Multiplayer Games 2024 ๐ŸŽฎ ## 1 Traditional MMORPGs ๐Ÿ—ก๏ธ ### 1.1 Major MMORPGs ๐Ÿฐ - Final Fantasy XIV Dawntrail 2024 โš”๏ธ - Advanced Job System Rework ๐ŸŽญ - Cross Platform Integration ๐ŸŽช - New Housing Districts ๐Ÿ˜๏ธ - World of Warcraft 2024 Season ๐Ÿฒ - Dragon Combat System ๐Ÿฆ‹ - Cross Faction Features โšœ๏ธ - Mythic Plus Seasons ๐Ÿ† - Elder Scrolls Online Gold Road ๐Ÿ—๏ธ - Dynamic Event System ๐ŸŒŸ - Housing Construction ๐Ÿ›๏ธ - Champion System 2.0 ๐Ÿ“Š - Lost Ark Western T4 Update โšก - Legion Raid Content ๐Ÿ‘พ - Island Adventure System ๐Ÿ๏ธ - Class Balance Rework ๐Ÿ”ฐ - Black Desert Online Remaster ๐ŸŽช - Combat System Update ๐ŸŽฏ - Node Empire System ๐Ÿน - Life Skill Evolution ๐ŸŒณ ### 1.2 Emerging MMORPGs ๐ŸŒ  - Throne and Liberty Launch ๐Ÿ‘‘ - Weather Combat System ๐ŸŒฆ๏ธ - Territory Wars ๐Ÿ—บ๏ธ - Transformation System ๐Ÿ‰ - Pax Dei Medieval MMO โš”๏ธ - City Management ๐Ÿฐ - Faith Based Magic โœจ - Global Trading ๐Ÿ’Ž - Blue Protocol Western Release ๐ŸŒŒ - Action Combat Design ๐ŸŽญ - Class Change System โšก - Dungeon Scaling ๐Ÿ—ผ ## 2 Survival MMOs ๐Ÿน ### 2.1 Established Survival ๐Ÿ›ก๏ธ - Rust 2024 Updates ๐Ÿฆพ - Electricity Programming ๐Ÿ’ก - Vehicle System Update ๐Ÿš— - Automated Defenses โšก - ARK Survival Ascended ๐Ÿฆ– - Cross ARK System ๐ŸŒ - Creature Breeding 2.0 ๐Ÿฅš - Base Defense Network ๐Ÿฐ - DayZ 2024 Content ๐ŸงŸ - Medical System Update ๐Ÿ’‰ - Disease Mechanics ๐Ÿฆ  - Base Building 2.0 ๐Ÿ—๏ธ - 7 Days to Die Alpha 22 ๐Ÿš๏ธ - Physics Engine Update ๐Ÿ’ฅ - AI Pathfinding System ๐Ÿง  - Vehicle Customization ๐Ÿš™ ### 2.2 New Survival MMOs ๐Ÿ†• - Once Human Launch ๐Ÿงฌ - Mutation System ๐Ÿงช - Base Building Tech ๐Ÿญ - Weather Impact System ๐ŸŒช๏ธ - Nightingale Release ๐ŸŒ™ - Portal Realm System ๐ŸŒŒ - Victorian Crafting ๐ŸŽฉ - Fae World Design ๐Ÿงš ## 3 Hybrid MMOs ๐ŸŽฏ ### 3.1 Looter Shooters ๐Ÿ”ซ - Destiny 2 2024 Season ๐Ÿ›ธ - Build System 3.0 ๐Ÿ› ๏ธ - Raid Mechanics โญ - Season Structure ๐Ÿ“ˆ - The Division 2 Year 6 ๐Ÿ™๏ธ - Loadout Expansion ๐ŸŽ’ - Dark Zone Update ๐ŸŒƒ - Manhunt System ๐ŸŽฏ - Warframe 2024 Update ๐Ÿค– - Movement Tech 2.0 ๐Ÿƒ - Mod System Rework โš™๏ธ - Open World Expansion ๐ŸŒ… ### 3.2 Action RPG MMOs ๐Ÿ’ซ - Path of Exile 2 Beta ๐Ÿ’Ž - Gem System Rework ๐Ÿ’ซ - New Skill Tree ๐ŸŒฒ - League Content ๐Ÿ† - Diablo 4 Season Structure ๐Ÿ˜ˆ - Season Journey System ๐ŸŽญ - World Boss Events ๐Ÿฒ - PvP Territories ๐Ÿ—ก๏ธ ## 4 Simulation MMOs ๐ŸŒ ### 4.1 Space Simulation ๐Ÿš€ - EVE Online 2024 ๐Ÿ›ธ - Corporation Warfare ๐Ÿดโ€โ˜ ๏ธ - Market System Update ๐Ÿ“Š - Fleet Operations ๐Ÿšข - Elite Dangerous Update ๐ŸŒŒ - Ground Combat System ๐Ÿ‘จโ€๐Ÿš€ - Fleet Carrier Content โญ - Planet Exploration ๐Ÿช - Star Citizen Alpha ๐Ÿ›ธ - Persistent Universe ๐ŸŒ - Ship Combat Update โš”๏ธ - Trading System 2.0 ๐Ÿ’ฐ ### 4.2 World Simulation ๐ŸŒŽ - New World Eternal ๐Ÿ—บ๏ธ - Territory System ๐Ÿฐ - Crafting Update ๐Ÿ› ๏ธ - War System 2.0 โš”๏ธ - Albion Online 2024 ๐Ÿน - Guild Warfare Update โš”๏ธ - Economy System 2.0 ๐Ÿ’ฐ - Territory Control ๐Ÿฐ ## 5 Unique Multiplayer Games ๐ŸŽฒ ### 5.1 Adventure Multiplayer ๐Ÿ—บ๏ธ - Sea of Thieves 2024 โ›ต - Ship Combat Physics ๐ŸŒŠ - Crew Management ๐Ÿดโ€โ˜ ๏ธ - World Events ๐ŸŽช - Valheim Updates โšก - Building System 2.0 ๐Ÿ—๏ธ - Boss Progression ๐Ÿ‘น - Exploration Update ๐Ÿ—บ๏ธ ### 5.2 Combat Focused ๐Ÿ—ก๏ธ - Mordhau 2024 โš”๏ธ - Combat Physics Update ๐Ÿคบ - Map System Rework ๐Ÿฐ - Tournament System ๐Ÿ† - For Honor Year 8 ๐Ÿ›ก๏ธ - Faction War Update โš”๏ธ - Hero Rework System ๐ŸŽญ - Seasonal Content ๐ŸŒŸ ## 6 Upcoming 2024 Games ๐Ÿ”ฎ ### 6.1 Launching Soon ๐Ÿ“… - Gray Zone Warfare ๐ŸŽ–๏ธ - Tactical Systems ๐ŸŽฏ - Base Operations ๐Ÿข - Territory Control ๐Ÿ—บ๏ธ - Fractured Online ๐ŸŒŸ - City Building ๐Ÿ—๏ธ - Knowledge System ๐Ÿ“š - Player Economy ๐Ÿ’ฐ ### 6.2 In Development ๐Ÿ› ๏ธ - Ashes of Creation ๐Ÿฐ - Node System ๐ŸŒฑ - Castle Siege โš”๏ธ - Caravan System ๐Ÿช - Pantheon Rise of the Fallen ๐ŸŒ… - Climate System ๐ŸŒฆ๏ธ - Group Content Focus ๐Ÿ‘ฅ - Perception System ๐Ÿ‘๏ธ """ def get_display_name(filename): """Extract text from parentheses or return filename as is.""" match = re.search(r'\((.*?)\)', filename) if match: return match.group(1) return filename def get_time_display(filename): """Extract just the time portion from the filename.""" time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename) if time_match: return time_match.group(1) return filename def sanitize_filename(text): """Create a safe filename from text while preserving spaces.""" # First replace unsafe characters with spaces safe_text = re.sub(r'[^\w\s-]', ' ', text) # Remove any multiple spaces safe_text = re.sub(r'\s+', ' ', safe_text) # Trim leading/trailing spaces safe_text = safe_text.strip() return safe_text[:50] # Limit length to 50 chars def generate_timestamp_filename(query): """Generate filename with format: 1103AM 11032024 (Query).md""" # Get current time in Central timezone central = pytz.timezone('US/Central') current_time = datetime.now(central) # Format the timestamp parts time_str = current_time.strftime("%I%M%p") # 1103AM format date_str = current_time.strftime("%m%d%Y") # 11032024 format # Clean up the query for filename - now preserving spaces safe_query = sanitize_filename(query) # Construct filename: "1103AM 11032024 (Input with spaces).md" filename = f"{time_str} {date_str} ({safe_query}).md" return filename def delete_file(file_path): """Delete a file and return success status.""" try: os.remove(file_path) return True except Exception as e: st.error(f"Error deleting file: {e}") return False def save_ai_interaction(query, ai_result, is_rerun=False): """Save AI interaction to a markdown file with new filename format.""" filename = generate_timestamp_filename(query) # Format the content differently for rerun vs normal query if is_rerun: content = f"""# Rerun Query Original file content used for rerun: {query} # AI Response (Fun Version) {ai_result} """ else: content = f"""# Query: {query} ## AI Response {ai_result} """ # Save to file try: with open(filename, 'w', encoding='utf-8') as f: f.write(content) return filename except Exception as e: st.error(f"Error saving file: {e}") return None def get_file_download_link(file_path): """Generate a base64 download link for a file.""" try: with open(file_path, 'r', encoding='utf-8') as f: content = f.read() b64 = base64.b64encode(content.encode()).decode() filename = os.path.basename(file_path) return f'{get_display_name(filename)}' except Exception as e: st.error(f"Error creating download link: {e}") return None def extract_terms(markdown_text): """Parse markdown text and extract terms.""" lines = markdown_text.strip().split('\n') terms = [] for line in lines: line = re.sub(r'^[#*\->\d\.\s]+', '', line).strip() if line: terms.append(line) return terms def display_terms_with_links(terms): """Display terms with various search links.""" search_urls = { "๐Ÿš€๐ŸŒŒArXiv": lambda k: f"/?q={quote(k)}", "๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", "๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}", "โ–ถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", "๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}", "๐Ÿฆ": lambda k: f"https://twitter.com/search?q={quote(k)}", } for term in terms: links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) st.markdown(f"- **{term}** {links_md}", unsafe_allow_html=True) def perform_ai_lookup(query): all="" st.markdown(f"- {query}") # ๐Ÿ”Run 1 - ArXiv RAG researcher expert ~-<>-~ Paper Summary & Ask LLM client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") response2 = client.predict( query, # str in 'parameter_13' Textbox component #"mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component #"mistralai/Mistral-7B-Instruct-v0.2", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component "google/gemma-7b-it", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component True, # bool in 'Stream output' Checkbox component api_name="/ask_llm" ) st.write('๐Ÿ”Run of Multi-Agent System Paper Summary Spec is Complete') st.markdown(response2) # ArXiv searcher ~-<>-~ Paper References - Update with RAG client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") response1 = client.predict( query, 10, "Semantic Search - up to 10 Mar 2024", # Literal['Semantic Search - up to 10 Mar 2024', 'Arxiv Search - Latest - (EXPERIMENTAL)'] in 'Search Source' Dropdown component "mistralai/Mixtral-8x7B-Instruct-v0.1", # Literal['mistralai/Mixtral-8x7B-Instruct-v0.1', 'mistralai/Mistral-7B-Instruct-v0.2', 'google/gemma-7b-it', 'None'] in 'LLM Model' Dropdown component api_name="/update_with_rag_md" ) st.write('๐Ÿ”Run of Multi-Agent System Paper References is Complete') responseall = response2 + response1[0] + response1[1] st.markdown(responseall) """Perform AI lookup using Gradio client.""" st.write("Performing AI Lookup...") client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") result1 = client.predict( prompt=query, llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", stream_outputs=True, api_name="/ask_llm" ) st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result") st.markdown(result1) result2 = client.predict( prompt=query, llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", stream_outputs=True, api_name="/ask_llm" ) st.markdown("### Mistral-7B-Instruct-v0.2 Result") st.markdown(result2) combined_result = f"{result1}\n\n{result2}" #return combined_result return responseall def display_file_content(file_path): """Display file content with editing capabilities.""" try: with open(file_path, 'r', encoding='utf-8') as f: content = f.read() if st.session_state.view_mode == 'view': # Display as markdown when viewing st.markdown(content) else: # Edit functionality edited_content = st.text_area( "Edit content", content, height=400, key=f"edit_{os.path.basename(file_path)}" ) if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"): try: with open(file_path, 'w', encoding='utf-8') as f: f.write(edited_content) st.success(f"Successfully saved changes to {file_path}") except Exception as e: st.error(f"Error saving changes: {e}") except Exception as e: st.error(f"Error reading file: {e}") def file_management_sidebar(): """Redesigned sidebar with improved layout and additional functionality.""" st.sidebar.title("๐Ÿ“ File Management") # Get list of .md files excluding README.md md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md'] md_files.sort() st.session_state.files = md_files if md_files: st.sidebar.markdown("### Saved Files") for idx, file in enumerate(md_files): st.sidebar.markdown("---") # Separator between files # Display time st.sidebar.text(get_time_display(file)) # Display download link with simplified text download_link = get_file_download_link(file) if download_link: st.sidebar.markdown(download_link, unsafe_allow_html=True) # Action buttons in a row col1, col2, col3, col4 = st.sidebar.columns(4) with col1: if st.button("๐Ÿ“„ View", key=f"view_{idx}"): st.session_state.selected_file = file st.session_state.view_mode = 'view' with col2: if st.button("โœ๏ธ Edit", key=f"edit_{idx}"): st.session_state.selected_file = file st.session_state.view_mode = 'edit' with col3: if st.button("๐Ÿ”„ Rerun", key=f"rerun_{idx}"): try: with open(file, 'r', encoding='utf-8') as f: content = f.read() # Prepare the prompt with the prefix rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader: """ full_prompt = rerun_prefix + content # Perform AI lookup and save results ai_result = perform_ai_lookup(full_prompt) saved_file = save_ai_interaction(content, ai_result, is_rerun=True) if saved_file: st.success(f"Created fun version in {saved_file}") st.session_state.selected_file = saved_file st.session_state.view_mode = 'view' except Exception as e: st.error(f"Error during rerun: {e}") with col4: if st.button("๐Ÿ—‘๏ธ Delete", key=f"delete_{idx}"): if delete_file(file): st.success(f"Deleted {file}") st.rerun() else: st.error(f"Failed to delete {file}") st.sidebar.markdown("---") # Option to create a new markdown file if st.sidebar.button("๐Ÿ“ Create New Note"): filename = generate_timestamp_filename("New Note") with open(filename, 'w', encoding='utf-8') as f: f.write("# New Markdown File\n") st.sidebar.success(f"Created: {filename}") st.session_state.selected_file = filename st.session_state.view_mode = 'edit' else: st.sidebar.write("No markdown files found.") if st.sidebar.button("๐Ÿ“ Create First Note"): filename = generate_timestamp_filename("New Note") with open(filename, 'w', encoding='utf-8') as f: f.write("# New Markdown File\n") st.sidebar.success(f"Created: {filename}") st.session_state.selected_file = filename st.session_state.view_mode = 'edit' def main(): st.title("AI Knowledge Tree Builder ๐Ÿง ๐ŸŒฑ Cultivate Your AI Mindscape!") # Process query parameters and AI lookup first query_params = st.query_params query = query_params.get('q', '') show_initial_content = True # Flag to control initial content display # First priority: Handle active query if query: show_initial_content = False # Hide initial content when showing query results st.write(f"### Search query received: {query}") try: ai_result = perform_ai_lookup(query) # Save the interaction saved_file = save_ai_interaction(query, ai_result) if saved_file: st.success(f"Saved interaction to {saved_file}") st.session_state.selected_file = saved_file st.session_state.view_mode = 'view' except Exception as e: st.error(f"Error during AI lookup: {e}") # File management sidebar file_management_sidebar() # Second priority: Display selected file content if any if st.session_state.selected_file: show_initial_content = False # Hide initial content when showing file content if os.path.exists(st.session_state.selected_file): st.markdown(f"### Current File: {st.session_state.selected_file}") display_file_content(st.session_state.selected_file) else: st.error("Selected file no longer exists.") st.session_state.selected_file = None st.rerun() # Show initial content: Either when first landing or when no interactive elements are active if show_initial_content: # First show the clickable terms with links terms1 = extract_terms(AITopicsToInnovate1) terms2 = extract_terms(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds) all_terms = terms1 + terms2 col1, col2, col3, col4 = st.columns(4) with col1: st.markdown("# AI Topics to Innovate With") st.markdown(AITopicsToInnovate1) with col2: st.markdown("# AI Agent Links") display_terms_with_links(terms1) with col3: st.markdown("# Multiplayer Games and MMOs") st.markdown(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds) with col4: st.markdown("# Multiplayer Game and MMO Links") display_terms_with_links(terms2) if __name__ == "__main__": main()