import streamlit as st import os import glob import re import base64 import pytz from urllib.parse import quote from gradio_client import Client from datetime import datetime # ๐ŸŒณ๐Ÿค– AIKnowledgeTreeBuilder - Because every app needs a good costume! Site_Name = 'AI Knowledge Tree Builder ๐Ÿ“ˆ๐ŸŒฟ Grow Smarter with Every Click' title = "๐ŸŒณโœจAI Knowledge Tree Builder๐Ÿ› ๏ธ๐Ÿค“" helpURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' bugURL = 'https://huggingface.co/spaces/awacke1/AIKnowledgeTreeBuilder/' icons = '๐ŸŒณโœจ๐Ÿ› ๏ธ๐Ÿค“' st.set_page_config( page_title=title, page_icon=icons, layout="wide", initial_sidebar_state="auto", menu_items={ 'Get Help': helpURL, 'Report a bug': bugURL, 'About': title } ) # Initialize session state variables if 'selected_file' not in st.session_state: st.session_state.selected_file = None if 'view_mode' not in st.session_state: st.session_state.view_mode = 'view' if 'files' not in st.session_state: st.session_state.files = [] AITopicsToInnovate1=""" 1. Major AI Industry Players ๐ŸŒ 1. Research Leaders ๐ŸŽฏ - OpenAI: GPT-4 DALL-E Foundation Models ๐Ÿ”ต - Google: PaLM Gemini LLMs ๐ŸŸฆ - Anthropic: Claude Constitutional AI โšก - Meta: LLaMA Open Source LLMs ๐Ÿ‘ค - xAI: Grok Conversational AI ๐Ÿค– 2. Technical AI Development ๐Ÿ› ๏ธ 1. Architecture Advances ๐Ÿ’ซ - Transformer Models Attention Mechanisms ๐Ÿง  - Mixture of Experts MoE Architecture ๐ŸŽช - Sparse Neural Networks ๐Ÿ•ธ๏ธ - Multi-modal LLM Systems ๐ŸŒˆ - Flash Attention Optimization โš”๏ธ 2. Training Methodologies ๐Ÿ“š - LLM Supervised Fine-tuning ๐Ÿ‘จโ€๐Ÿซ - RLHF Reward Models ๐Ÿค - Constitutional AI Training ๐Ÿ“œ - RLAIF Feedback Models ๐Ÿ”„ - Synthetic Data LLM Training ๐ŸŽฒ - Chain of Thought Prompting ๐Ÿงฉ - Tree of Thoughts Reasoning ๐ŸŒณ 3. Post-Training Implementation ๐Ÿ”ง - Neural Network Distillation ๐Ÿงช - LLM Quantization Methods ๐Ÿ“Š - Neural Network Pruning โœ‚๏ธ - Knowledge Distillation Transfer ๐Ÿ“– - Few-shot LLM Learning ๐ŸŽฏ 3. Mechanistic Interpretability ๐Ÿ”ฌ 1. Core Concepts ๐Ÿ’ก - Neural Network Growth Analysis ๐ŸŒฑ - LLM Architecture Analysis ๐Ÿ—๏ธ - Training Loss Optimization ๐ŸŽจ - Neural Network Analogies ๐Ÿงฌ 2. Technical Features ๐Ÿ“ - LLM Linear Representations โžก๏ธ - Neural Vector Arithmetic ๐Ÿ”ข - Neural Activation Patterns ๐ŸŒŠ - LLM Feature Detection ๐Ÿ” - Neural Sparse Autoencoders ๐ŸŽญ 3. Network Analysis ๐Ÿ•ต๏ธ - LLM Induction Heads ๐Ÿ‘€ - Transformer Attention Analysis ๐ŸŽช - Neural Circuit Analysis ๐Ÿ”Œ - LLM Feature Visualization ๐Ÿ“ˆ - Neural Concept Directions ๐ŸŽณ 4. Future AI Developments ๐Ÿš€ 1. AGI Timeline โฐ - AGI Capability Projections ๐Ÿ“… - Neural Hardware Scaling ๐Ÿ’พ - LLM Training Data Limits ๐Ÿ“‰ - AI Compute Resources ๐Ÿ—บ๏ธ 2. Integration Fields ๐ŸŽก - AI Biology Integration ๐Ÿ”ฎ - AI Drug Discovery Systems ๐Ÿ’Š - AI Clinical Trial Analysis ๐Ÿฅ - AI Code Generation ๐Ÿคน - AI Scientific Discovery ๐Ÿงฎ 5. Industry Best Practices ๐Ÿ’Ž 1. AI Team Building ๐Ÿข - AI Talent Development ๐Ÿ‘ฅ - AI Research Alignment ๐ŸŽช - AI Team Scaling ๐Ÿ“Š - AI Research Culture ๐ŸŒŸ 2. AI Research Qualities ๐ŸŽ“ - AI Research Methodology ๐Ÿงญ - AI Experimentation Protocols ๐Ÿ—๏ธ - AI Innovation Thinking ๐Ÿ’ซ - AI Testing Framework โš–๏ธ 3. AI Safety Standards ๐Ÿ›ก๏ธ - LLM Behavioral Specifications ๐Ÿ“‹ - AI Safety Guidelines ๐ŸŽฎ - AI Ethics Framework โ›‘๏ธ - AI Industry Standards ๐Ÿคฒ 6. Emerging Research Areas ๐Ÿ”ฎ 1. Technical Focus ๐ŸŽฏ - LLM Long Context Learning โณ - LLM Multi-agent Interaction ๐Ÿ‘พ - AI Evaluation Metrics ๐Ÿ“Œ - Neural Interpretability Methods ๐Ÿ”ญ 2. AI Applications ๐Ÿ’ผ - AI Automated Research ๐Ÿงซ - AI Code Synthesis โŒจ๏ธ - AI Biological Modeling ๐Ÿงฏ - AI Medical Diagnostics ๐Ÿ’‰ 7. Model Intelligence ๐Ÿงฟ 1. LLM System Development ๐ŸŽช - LLM Prompt Engineering ๐Ÿ“ - LLM Response Generation โ™Ÿ๏ธ - LLM Behavioral Training ๐ŸŽน - LLM Personality Development ๐ŸŽช 2. LLM User Interaction ๐ŸŽญ - LLM Autonomy Alignment ๐ŸŽช - LLM Safety Boundaries ๐Ÿ”’ - LLM Communication Patterns ๐Ÿ—ฃ๏ธ - LLM Performance Tuning ๐ŸŽข """ DarioAmodeiKnowledge=""" 1. Major AI Industry Players ๐ŸŒ 1. Research Leaders ๐ŸŽฏ - OpenAI: GPT-4 DALL-E ๐Ÿ”ต - Google: PaLM Gemini ๐ŸŸฆ - Anthropic: Claude โšก - Meta: LLaMA ๐Ÿ‘ค - xAI: Grok ๐Ÿค– 2. Technical AI Development ๐Ÿ› ๏ธ 1. Architecture Advances ๐Ÿ’ซ - Transformer Models ๐Ÿง  - Mixture of Experts ๐ŸŽช - Sparse Architectures ๐Ÿ•ธ๏ธ - Multi-modal Models ๐ŸŒˆ - Flash Attention โš”๏ธ 2. Training Methodologies ๐Ÿ“š - Supervised Fine-tuning ๐Ÿ‘จโ€๐Ÿซ - RLHF Human Feedback ๐Ÿค - Constitutional AI ๐Ÿ“œ - RLAIF AI Feedback ๐Ÿ”„ - Synthetic Data Generation ๐ŸŽฒ - Chain of Thought ๐Ÿงฉ - Tree of Thoughts ๐ŸŒณ 3. Post-Training Implementation ๐Ÿ”ง - Model Distillation ๐Ÿงช - Quantization ๐Ÿ“Š - Pruning โœ‚๏ธ - Knowledge Distillation ๐Ÿ“– - Few-shot Learning ๐ŸŽฏ 3. Mechanistic Interpretability ๐Ÿ”ฌ 1. Core Concepts ๐Ÿ’ก - Neural Network Growth Patterns ๐ŸŒฑ - Architecture Scaffolding ๐Ÿ—๏ธ - Training Objective Guidance ๐ŸŽจ - Biological System Analogies ๐Ÿงฌ 2. Technical Features ๐Ÿ“ - Linear Representations โžก๏ธ - Vector Arithmetic ๐Ÿ”ข - Activation Patterns ๐ŸŒŠ - Feature Detection ๐Ÿ” - Sparse Autoencoders ๐ŸŽญ 3. Network Analysis ๐Ÿ•ต๏ธ - Induction Heads ๐Ÿ‘€ - Attention Mechanisms ๐ŸŽช - Circuit Analysis ๐Ÿ”Œ - Feature Visualization ๐Ÿ“ˆ - Concept Directions ๐ŸŽณ 4. Future AI Developments ๐Ÿš€ 1. AGI Timeline โฐ - 2026-2027 Capability Projections ๐Ÿ“… - Hardware Scaling ๐Ÿ’พ - Data Limitations ๐Ÿ“‰ - Geopolitical Factors ๐Ÿ—บ๏ธ 2. Integration Fields ๐ŸŽก - Biology Research ๐Ÿ”ฎ - Drug Discovery ๐Ÿ’Š - Clinical Trials ๐Ÿฅ - Programming Automation ๐Ÿคน - Scientific Research ๐Ÿงฎ 5. Industry Best Practices ๐Ÿ’Ž 1. Team Building ๐Ÿข - Talent Density Focus ๐Ÿ‘ฅ - Mission Alignment ๐ŸŽช - Rapid Scaling Management ๐Ÿ“Š - Culture Development ๐ŸŒŸ 2. Research Qualities ๐ŸŽ“ - Scientific Mindset ๐Ÿงญ - Experimental Approach ๐Ÿ—๏ธ - Unconventional Thinking ๐Ÿ’ซ - Rapid Testing โš–๏ธ 3. Safety Standards ๐Ÿ›ก๏ธ - Model Specifications ๐Ÿ“‹ - Behavioral Guidelines ๐ŸŽฎ - Ethics Implementation โ›‘๏ธ - Industry Collaboration ๐Ÿคฒ 6. Emerging Research Areas ๐Ÿ”ฎ 1. Technical Focus ๐ŸŽฏ - Long Horizon Learning โณ - Multi-agent Systems ๐Ÿ‘พ - Evaluation Systems ๐Ÿ“Œ - Interpretability Research ๐Ÿ”ญ 2. Applications ๐Ÿ’ผ - Automated Science ๐Ÿงซ - AI Programming Tools โŒจ๏ธ - Biological Simulation ๐Ÿงฏ - Clinical Applications ๐Ÿ’‰ 7. Model Intelligence ๐Ÿงฟ 1. System Development ๐ŸŽช - Prompt Engineering ๐Ÿ“ - Response Patterns โ™Ÿ๏ธ - Behavioral Modification ๐ŸŽน - Character Development ๐ŸŽช 2. User Interaction ๐ŸŽญ - Autonomy Respect ๐ŸŽช - Safety Boundaries ๐Ÿ”’ - Communication Adaptation ๐Ÿ—ฃ๏ธ - Performance Optimization ๐ŸŽข """ # Define the markdown variables Boxing_and_MMA_Commentary_and_Knowledge = """ # Boxing and UFC Study of 1971 - 2024 The Greatest Fights History 1. In Boxing, the most heart breaking fight in Boxing was the Boom Boom Mancini fight with Duku Kim. 2. After changes to Boxing made it more safe due to the heart break. 3. Rehydration of the brain after weight ins loss preparation for a match is life saving change. 4. Fighting went from 15 rounds to 12. # UFC By Contrast.. 1. 5 Rounds of 5 Minutes each. 2. Greatest UFC Fighters: - Jon Jones could be the greatest of all time (GOAT) since he never lost. - George St. Pierre - BJ Penn - Anderson Silva - Mighty Mouse MMA's heart at 125 pounds - Kabib retired 29 and 0 - Fedor Milliano - Alex Pereira - James Tony - Randy Couture 3. You have to Judge them in their Championship Peak 4. Chris Weidman 5. Connor McGregor 6. Leg Breaking - Shin calcification and breaking baseball bats # References: 1. Joe Rogan - Interview #2219 2. Donald J Trump """ Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds = """ # Multiplayer Simulated Worlds # Farming Simulator 25 Prompt Features with Emojis: # Top Multiplayer and MMO Games 2024 ## 1. Top Multiplayer Survival & Simulation Games 2024 ๐ŸŽฎ ### 1.1 Survival Games ๐Ÿน - **Rust** ๐Ÿฆพ * Advanced Base Building Physics * Electricity & Automation Systems * Dynamic Player-driven Economy - **ARK: Survival Evolved** ๐Ÿฆ– * Dinosaur Taming & Breeding * Tek Tier Technology System * Cross-map Resource Networks - **Valheim** โš”๏ธ * Norse Mythology Building System * Boss-progression World Evolution * Structural Integrity Physics - **DayZ** ๐ŸงŸ * Realistic Medical System * Dynamic Disease Mechanics * Advanced Ballistics Simulation - **7 Days to Die** ๐Ÿฐ * Voxel Destruction Physics * Dynamic Horde AI System * Advanced Base Engineering ### 1.2 Simulation & Building Games ๐Ÿ—๏ธ - **Satisfactory** ๐Ÿญ * 3D Factory Automation * Vertical Building Systems * Multi-tier Production Chains - **Factorio** โš™๏ธ * Complex Logistics Networks * Modular Factory Design * Advanced Train Systems - **Space Engineers** ๐Ÿš€ * Physics-based Construction * Programmable Block System * Zero-G Engineering - **Farming Simulator 22** ๐Ÿšœ * Real Brand Machinery * Complex Production Chains * Season-based Agriculture - **Eco** ๐ŸŒ * Economic Simulation * Environmental Impact System * Government Creation Tools ## 2. Top MMO Games 2024 ๐ŸŒ ### 2.1 Fantasy MMORPGs ๐Ÿ—ก๏ธ - **Final Fantasy XIV** โœจ * Job System Flexibility * Story-driven Content * Cross-platform Raids - **World of Warcraft** ๐Ÿฒ * Dragonflight Flying System * Mythic+ Challenge System * Cross-faction Activities - **Elder Scrolls Online** ๐Ÿน * One Tamriel Level Scaling * Housing Construction * Champion Point System - **Lost Ark** โš”๏ธ * Combat Skill System * Island Content System * Legion Raid Mechanics - **Black Desert Online** ๐ŸŽญ * Action Combat System * Life Skill Systems * Node Management ### 2.2 Modern/Sci-Fi MMOs ๐Ÿ›ธ - **Destiny 2** ๐Ÿ‘ฝ * Buildcrafting System * Raid Mechanics * Season Narrative Structure - **Star Wars: The Old Republic** ๐ŸŒŸ * Story Choice System * Legacy System * Companion Influence - **Warframe** ๐Ÿค– * Movement System * Frame Customization * Open World Integration - **The Division 2** ๐Ÿ™๏ธ * Cover Combat System * Dark Zone Mechanics * Recalibration System - **Path of Exile** โšก * Skill Gem System * Passive Tree Complexity * League Mechanics ## 3. Notable Crossplay Games ๐ŸŽฏ - **Minecraft** ๐Ÿ“ฆ * Cross-platform Building * Redstone Engineering * Modded Servers - **Sea of Thieves** ๐Ÿดโ€โ˜ ๏ธ * Ship Combat Physics * Crew Coordination * World Events - **No Man's Sky** ๐Ÿช * Procedural Planets * Base Building Network * Multiplayer Expeditions """ def get_display_name(filename): """Extract text from parentheses or return filename as is.""" match = re.search(r'\((.*?)\)', filename) if match: return match.group(1) return filename def get_time_display(filename): """Extract just the time portion from the filename.""" time_match = re.match(r'(\d{2}\d{2}[AP]M)', filename) if time_match: return time_match.group(1) return filename def sanitize_filename(text): """Create a safe filename from text while preserving spaces.""" # First replace unsafe characters with spaces safe_text = re.sub(r'[^\w\s-]', ' ', text) # Remove any multiple spaces safe_text = re.sub(r'\s+', ' ', safe_text) # Trim leading/trailing spaces safe_text = safe_text.strip() return safe_text[:50] # Limit length to 50 chars def generate_timestamp_filename(query): """Generate filename with format: 1103AM 11032024 (Query).md""" # Get current time in Central timezone central = pytz.timezone('US/Central') current_time = datetime.now(central) # Format the timestamp parts time_str = current_time.strftime("%I%M%p") # 1103AM format date_str = current_time.strftime("%m%d%Y") # 11032024 format # Clean up the query for filename - now preserving spaces safe_query = sanitize_filename(query) # Construct filename: "1103AM 11032024 (Input with spaces).md" filename = f"{time_str} {date_str} ({safe_query}).md" return filename def delete_file(file_path): """Delete a file and return success status.""" try: os.remove(file_path) return True except Exception as e: st.error(f"Error deleting file: {e}") return False def save_ai_interaction(query, ai_result, is_rerun=False): """Save AI interaction to a markdown file with new filename format.""" filename = generate_timestamp_filename(query) # Format the content differently for rerun vs normal query if is_rerun: content = f"""# Rerun Query Original file content used for rerun: {query} # AI Response (Fun Version) {ai_result} """ else: content = f"""# Query: {query} ## AI Response {ai_result} """ # Save to file try: with open(filename, 'w', encoding='utf-8') as f: f.write(content) return filename except Exception as e: st.error(f"Error saving file: {e}") return None def get_file_download_link(file_path): """Generate a base64 download link for a file.""" try: with open(file_path, 'r', encoding='utf-8') as f: content = f.read() b64 = base64.b64encode(content.encode()).decode() filename = os.path.basename(file_path) return f'{get_display_name(filename)}' except Exception as e: st.error(f"Error creating download link: {e}") return None def extract_terms(markdown_text): """Parse markdown text and extract terms.""" lines = markdown_text.strip().split('\n') terms = [] for line in lines: line = re.sub(r'^[#*\->\d\.\s]+', '', line).strip() if line: terms.append(line) return terms def display_terms_with_links(terms): """Display terms with various search links.""" search_urls = { "๐Ÿš€๐ŸŒŒArXiv": lambda k: f"/?q={quote(k)}", "๐Ÿ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", "๐Ÿ”": lambda k: f"https://www.google.com/search?q={quote(k)}", "โ–ถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", "๐Ÿ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}", "๐Ÿฆ": lambda k: f"https://twitter.com/search?q={quote(k)}", } for term in terms: links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) st.markdown(f"- **{term}** {links_md}", unsafe_allow_html=True) def perform_ai_lookup(query): """Perform AI lookup using Gradio client.""" st.write("Performing AI Lookup...") client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") result1 = client.predict( prompt=query, llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", stream_outputs=True, api_name="/ask_llm" ) st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result") st.markdown(result1) result2 = client.predict( prompt=query, llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", stream_outputs=True, api_name="/ask_llm" ) st.markdown("### Mistral-7B-Instruct-v0.2 Result") st.markdown(result2) combined_result = f"{result1}\n\n{result2}" return combined_result def display_file_content(file_path): """Display file content with editing capabilities.""" try: with open(file_path, 'r', encoding='utf-8') as f: content = f.read() if st.session_state.view_mode == 'view': # Display as markdown when viewing st.markdown(content) else: # Edit functionality edited_content = st.text_area( "Edit content", content, height=400, key=f"edit_{os.path.basename(file_path)}" ) if st.button("Save Changes", key=f"save_{os.path.basename(file_path)}"): try: with open(file_path, 'w', encoding='utf-8') as f: f.write(edited_content) st.success(f"Successfully saved changes to {file_path}") except Exception as e: st.error(f"Error saving changes: {e}") except Exception as e: st.error(f"Error reading file: {e}") def file_management_sidebar(): """Redesigned sidebar with improved layout and additional functionality.""" st.sidebar.title("๐Ÿ“ File Management") # Get list of .md files excluding README.md md_files = [file for file in glob.glob("*.md") if file.lower() != 'readme.md'] md_files.sort() st.session_state.files = md_files if md_files: st.sidebar.markdown("### Saved Files") for idx, file in enumerate(md_files): st.sidebar.markdown("---") # Separator between files # Display time st.sidebar.text(get_time_display(file)) # Display download link with simplified text download_link = get_file_download_link(file) if download_link: st.sidebar.markdown(download_link, unsafe_allow_html=True) # Action buttons in a row col1, col2, col3, col4 = st.sidebar.columns(4) with col1: if st.button("๐Ÿ“„ View", key=f"view_{idx}"): st.session_state.selected_file = file st.session_state.view_mode = 'view' with col2: if st.button("โœ๏ธ Edit", key=f"edit_{idx}"): st.session_state.selected_file = file st.session_state.view_mode = 'edit' with col3: if st.button("๐Ÿ”„ Rerun", key=f"rerun_{idx}"): try: with open(file, 'r', encoding='utf-8') as f: content = f.read() # Prepare the prompt with the prefix rerun_prefix = """For the markdown below reduce the text to a humorous fun outline with emojis and markdown outline levels in outline that convey all the facts and adds wise quotes and funny statements to engage the reader: """ full_prompt = rerun_prefix + content # Perform AI lookup and save results ai_result = perform_ai_lookup(full_prompt) saved_file = save_ai_interaction(content, ai_result, is_rerun=True) if saved_file: st.success(f"Created fun version in {saved_file}") st.session_state.selected_file = saved_file st.session_state.view_mode = 'view' except Exception as e: st.error(f"Error during rerun: {e}") with col4: if st.button("๐Ÿ—‘๏ธ Delete", key=f"delete_{idx}"): if delete_file(file): st.success(f"Deleted {file}") st.rerun() else: st.error(f"Failed to delete {file}") st.sidebar.markdown("---") # Option to create a new markdown file if st.sidebar.button("๐Ÿ“ Create New Note"): filename = generate_timestamp_filename("New Note") with open(filename, 'w', encoding='utf-8') as f: f.write("# New Markdown File\n") st.sidebar.success(f"Created: {filename}") st.session_state.selected_file = filename st.session_state.view_mode = 'edit' else: st.sidebar.write("No markdown files found.") if st.sidebar.button("๐Ÿ“ Create First Note"): filename = generate_timestamp_filename("New Note") with open(filename, 'w', encoding='utf-8') as f: f.write("# New Markdown File\n") st.sidebar.success(f"Created: {filename}") st.session_state.selected_file = filename st.session_state.view_mode = 'edit' def main(): st.title("AI Knowledge Tree Builder ๐Ÿง ๐ŸŒฑ Cultivate Your AI Mindscape!") # Process query parameters and AI lookup first query_params = st.query_params query = query_params.get('q', '') show_initial_content = True # Flag to control initial content display # First priority: Handle active query if query: show_initial_content = False # Hide initial content when showing query results st.write(f"### Search query received: {query}") try: ai_result = perform_ai_lookup(query) # Save the interaction saved_file = save_ai_interaction(query, ai_result) if saved_file: st.success(f"Saved interaction to {saved_file}") st.session_state.selected_file = saved_file st.session_state.view_mode = 'view' except Exception as e: st.error(f"Error during AI lookup: {e}") # File management sidebar file_management_sidebar() # Second priority: Display selected file content if any if st.session_state.selected_file: show_initial_content = False # Hide initial content when showing file content if os.path.exists(st.session_state.selected_file): st.markdown(f"### Current File: {st.session_state.selected_file}") display_file_content(st.session_state.selected_file) else: st.error("Selected file no longer exists.") st.session_state.selected_file = None st.rerun() # Show initial content: Either when first landing or when no interactive elements are active if show_initial_content: # First show the clickable terms with links terms1 = extract_terms(AITopicsToInnovate1) terms2 = extract_terms(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds) all_terms = terms1 + terms2 col1, col2, col3, col4 = st.columns(4) with col1: st.markdown("# AI Topics to Innovate With") st.markdown(AITopicsToInnovate1) with col2: st.markdown("# AI Agent Links") display_terms_with_links(terms1) with col3: st.markdown("# Multiplayer Games and MMOs") st.markdown(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds) with col4: st.markdown("# Multiplayer Game and MMO Links display_terms_with_links(terms2) if __name__ == "__main__": main()