import streamlit as st import os import glob import re from urllib.parse import quote from gradio_client import Client import json from datetime import datetime # Define the markdown variables Boxing_and_MMA_Commentary_and_Knowledge = """ # Boxing and UFC Study of 1971 - 2024 The Greatest Fights History 1. In Boxing, the most heart breaking fight in Boxing was the Boom Boom Mancini fight with Duku Kim. 2. After changes to Boxing made it more safe due to the heart break. 3. Rehydration of the brain after weight ins loss preparation for a match is life saving change. 4. Fighting went from 15 rounds to 12. # UFC By Contrast.. 1. 5 Rounds of 5 Minutes each. 2. Greatest UFC Fighters: - Jon Jones could be the greatest of all time (GOAT) since he never lost. - George St. Pierre - BJ Penn - Anderson Silva - Mighty Mouse MMA's heart at 125 pounds - Kabib retired 29 and 0 - Fedor Milliano - Alex Pereira - James Tony - Randy Couture 3. You have to Judge them in their Championship Peak 4. Chris Weidman 5. Connor McGregor 6. Leg Breaking - Shin calcification and breaking baseball bats # References: 1. Joe Rogan - Interview #2219 2. Donald J Trump """ Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds = """ # Multiplayer Simulated Worlds 1. 7 Days To Die PC 2. ARK: Survival Evolved PC 3. Arma 3 PC 4. Atlas PC 5. Conan Exiles PC 6. Craftopia PC 7. DayZ PC 8. Eco - Global Survival PC 9. Empyrion - Galactic Survival PC 10. Factorio PC 11. Farming Simulator 19 PC 12. Crossplay 13. Farming Simulator 22 14. Last Oasis PC 15. Last Oasis Classic PC 16. Minecraft (Vanilla) PC 17. Crossplay 18. Path of Titans 19. Rust PC 20. SCP: Secret Laboratory PC 21. SCUM PC 22. Satisfactory PC 23. Satisfactory (Experimental) PC 24. Crossplay 25. Space Engineers 26. Terraria (tShock & Vanilla) PC 27. The Forest PC 28. Crossplay 29. Valheim """ # Function to parse markdown text and extract terms def extract_terms(markdown_text): lines = markdown_text.strip().split('\n') terms = [] for line in lines: line = re.sub(r'^[#*\->\d\.\s]+', '', line).strip() if line: terms.append(line) return terms # Function to display terms with links def display_terms_with_links(terms): search_urls = { "πŸš€πŸŒŒArXiv": lambda k: f"/?q={quote(k)}", "πŸ“–": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", "πŸ”": lambda k: f"https://www.google.com/search?q={quote(k)}", "▢️": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", "πŸ”Ž": lambda k: f"https://www.bing.com/search?q={quote(k)}", "🐦": lambda k: f"https://twitter.com/search?q={quote(k)}", } for term in terms: links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) st.markdown(f"**{term}** {links_md}", unsafe_allow_html=True) # Function to perform AI lookup using Gradio client def perform_ai_lookup(query): st.write("Performing AI Lookup...") # Initialize the Gradio client client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") # Perform the AI lookup using the Mixtral and Mistral models result1 = client.predict( prompt=query, llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", stream_outputs=True, api_name="/ask_llm" ) st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result") st.markdown(result1) result2 = client.predict( prompt=query, llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", stream_outputs=True, api_name="/ask_llm" ) st.markdown("### Mistral-7B-Instruct-v0.2 Result") st.markdown(result2) combined_result = f"{result1}\n\n{result2}" return combined_result # Function to extract URLs from AI result def extract_urls(text): try: date_pattern = re.compile(r'### (\d{2} \w{3} \d{4})') abs_link_pattern = re.compile(r'\[(.*?)\]\((https://arxiv\.org/abs/\d+\.\d+)\)') pdf_link_pattern = re.compile(r'\[⬇️\]\((https://arxiv\.org/pdf/\d+\.\d+)\)') title_pattern = re.compile(r'### \d{2} \w{3} \d{4} \| \[(.*?)\]') date_matches = date_pattern.findall(text) abs_link_matches = abs_link_pattern.findall(text) pdf_link_matches = pdf_link_pattern.findall(text) title_matches = title_pattern.findall(text) markdown_text = "" for i in range(len(date_matches)): date = date_matches[i] title = title_matches[i] abs_link = abs_link_matches[i][1] pdf_link = pdf_link_matches[i] markdown_text += f"**Date:** {date}\n\n" markdown_text += f"**Title:** {title}\n\n" markdown_text += f"**Abstract Link:** [{abs_link}]({abs_link})\n\n" markdown_text += f"**PDF Link:** [{pdf_link}]({pdf_link})\n\n" markdown_text += "---\n\n" return markdown_text except Exception as e: st.write(f"An error occurred in extract_urls: {e}") return '' # Function to generate filename based on date and content def generate_filename(prefix, content): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") safe_content = re.sub(r'\W+', '_', content[:50]) filename = f"{prefix}_{timestamp}_{safe_content}.md" return filename # Sidebar for file management def file_management_sidebar(): st.sidebar.title("πŸ“ File Management") # Get list of .md files excluding README.md md_files = [file for file in glob.glob("*.md") if os.path.basename(file).lower() != 'readme.md'] md_files.sort() if md_files: selected_file = st.sidebar.selectbox("Select a markdown file to view/edit", md_files) # Navigation buttons file_index = md_files.index(selected_file) col1, col2 = st.sidebar.columns([1,1]) if col1.button("Previous"): if file_index > 0: selected_file = md_files[file_index -1] st.experimental_set_query_params(selected_file=selected_file) st.experimental_rerun() if col2.button("Next"): if file_index < len(md_files) -1: selected_file = md_files[file_index +1] st.experimental_set_query_params(selected_file=selected_file) st.experimental_rerun() # Load file content with open(selected_file, 'r', encoding='utf-8') as f: file_content = f.read() # Tabs for Markdown View and Code Editor tab1, tab2 = st.tabs(["Markdown View", "Code Editor"]) with tab1: st.markdown(f"### {selected_file}") st.markdown(file_content) with tab2: edited_content = st.text_area("Edit the markdown content", file_content, height=400) if st.button("Save Changes"): with open(selected_file, 'w', encoding='utf-8') as f: f.write(edited_content) st.success(f"Changes saved to {selected_file}") st.experimental_rerun() else: st.sidebar.write("No markdown files found.") # Option to create a new markdown file if st.sidebar.button("Create New Markdown File"): # Generate automatic filename timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") new_filename = f"note_{timestamp}.md" with open(new_filename, 'w', encoding='utf-8') as f: f.write("# New Markdown File\n") st.sidebar.success(f"Created new file: {new_filename}") st.experimental_set_query_params(selected_file=new_filename) st.experimental_rerun() # Main application logic def main(): st.title("Markdown Content with AI Lookup and File Management") # Display the original markdown content st.markdown("## Original Markdown Content") st.markdown(Boxing_and_MMA_Commentary_and_Knowledge) st.markdown(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds) # Parse and display terms with links st.markdown("## Terms with Links") terms1 = extract_terms(Boxing_and_MMA_Commentary_and_Knowledge) terms2 = extract_terms(Multiplayer_Custom_Hosting_Game_Servers_For_Simulated_Worlds) all_terms = terms1 + terms2 display_terms_with_links(all_terms) # Process 'q' query parameter from the URL query_params = st.experimental_get_query_params() if 'q' in query_params: search_query = query_params['q'][0] st.write(f"### Search query received: {search_query}") # Perform AI lookup ai_result = perform_ai_lookup(search_query) # Extract URLs from AI result markdown_text = extract_urls(ai_result) st.markdown("## Extracted URLs") st.markdown(markdown_text) # Save the result as markdown file filename = generate_filename("AI_Result", search_query) with open(filename, 'w', encoding='utf-8') as f: f.write(markdown_text) st.write(f"Generated file **{filename}** with AI lookup results.") # File management sidebar file_management_sidebar() if __name__ == "__main__": main()