Spaces:
Runtime error
Runtime error
Add timer
Browse files- app.py +17 -19
- extractor/extract.py +31 -27
- summarizer/summarize.py +2 -0
- translation/translation.py +2 -0
- utils/__init__.py +0 -0
- utils/__pycache__/__init__.cpython-39.pyc +0 -0
- utils/__pycache__/timing.cpython-39.pyc +0 -0
- utils/timing.py +79 -0
app.py
CHANGED
@@ -2,11 +2,12 @@ import streamlit as st
|
|
2 |
from extractor import extract, FewDocumentsError
|
3 |
from summarizer import summarize
|
4 |
from translation import translate
|
5 |
-
import
|
6 |
import cProfile
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
9 |
import torch
|
|
|
10 |
|
11 |
@st.cache(allow_output_mutation=True)
|
12 |
def init():
|
@@ -26,6 +27,7 @@ def init():
|
|
26 |
|
27 |
def main():
|
28 |
search_model, summ_model, tokenizer = init()
|
|
|
29 |
|
30 |
st.title("AutoSumm")
|
31 |
st.subheader("Lucas Antunes & Matheus Vieira")
|
@@ -33,14 +35,18 @@ def main():
|
|
33 |
portuguese = st.checkbox('Traduzir para o portugu锚s.')
|
34 |
|
35 |
if portuguese:
|
|
|
36 |
st.subheader("Digite o t贸pico sobre o qual voc锚 deseja gerar um resumo")
|
37 |
query_pt = st.text_input('Digite o t贸pico') #text is stored in this variable
|
38 |
button = st.button('Gerar resumo')
|
39 |
else:
|
|
|
40 |
st.subheader("Type the desired topic to generate the summary")
|
41 |
query = st.text_input('Type your topic') #text is stored in this variable
|
42 |
button = st.button('Generate summary')
|
43 |
|
|
|
|
|
44 |
if 'few_documents' not in st.session_state:
|
45 |
st.session_state['few_documents'] = False
|
46 |
few_documents = False
|
@@ -48,11 +54,9 @@ def main():
|
|
48 |
few_documents = st.session_state['few_documents']
|
49 |
|
50 |
if button:
|
51 |
-
start_time = time.time()
|
52 |
query = translate(query_pt, 'pt', 'en') if portuguese else query
|
53 |
try:
|
54 |
-
|
55 |
-
text = extract(query, search_model=search_model)
|
56 |
except FewDocumentsError as e:
|
57 |
few_documents = True
|
58 |
st.session_state['few_documents'] = True
|
@@ -60,32 +64,26 @@ def main():
|
|
60 |
st.session_state['msg'] = e.msg
|
61 |
else:
|
62 |
|
63 |
-
|
64 |
-
with st.spinner('Gerando resumo...'):
|
65 |
-
summary = summarize(text, summ_model, tokenizer)
|
66 |
-
st.info(f'(Total) Elapsed time: {time.time() - start_time:.2f}s')
|
67 |
|
68 |
if portuguese:
|
69 |
-
|
70 |
else:
|
71 |
-
|
|
|
|
|
72 |
|
73 |
|
74 |
if few_documents:
|
75 |
st.warning(st.session_state['msg'])
|
76 |
if st.button('Prosseguir'):
|
77 |
-
|
78 |
-
|
79 |
-
text = extract(query, search_model=search_model, extracted_documents=st.session_state['documents'])
|
80 |
-
st.info(f'(Extraction) Elapsed time: {time.time() - start_time:.2f}s')
|
81 |
-
with st.spinner('Gerando resumo...'):
|
82 |
-
summary = summarize(text, summ_model, tokenizer)
|
83 |
-
st.info(f'(Total) Elapsed time: {time.time() - start_time:.2f}s')
|
84 |
|
85 |
if portuguese:
|
86 |
-
|
87 |
else:
|
88 |
-
|
89 |
|
90 |
st.session_state['few_documents'] = False
|
91 |
few_documents = False
|
|
|
2 |
from extractor import extract, FewDocumentsError
|
3 |
from summarizer import summarize
|
4 |
from translation import translate
|
5 |
+
from utils.timing import Timer
|
6 |
import cProfile
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
9 |
import torch
|
10 |
+
from os import environ
|
11 |
|
12 |
@st.cache(allow_output_mutation=True)
|
13 |
def init():
|
|
|
27 |
|
28 |
def main():
|
29 |
search_model, summ_model, tokenizer = init()
|
30 |
+
Timer.reset()
|
31 |
|
32 |
st.title("AutoSumm")
|
33 |
st.subheader("Lucas Antunes & Matheus Vieira")
|
|
|
35 |
portuguese = st.checkbox('Traduzir para o portugu锚s.')
|
36 |
|
37 |
if portuguese:
|
38 |
+
environ['PORTUGUESE'] = 'true' # work around (gambiarra)
|
39 |
st.subheader("Digite o t贸pico sobre o qual voc锚 deseja gerar um resumo")
|
40 |
query_pt = st.text_input('Digite o t贸pico') #text is stored in this variable
|
41 |
button = st.button('Gerar resumo')
|
42 |
else:
|
43 |
+
environ['PORTUGUESE'] = 'false' # work around (gambiarra)
|
44 |
st.subheader("Type the desired topic to generate the summary")
|
45 |
query = st.text_input('Type your topic') #text is stored in this variable
|
46 |
button = st.button('Generate summary')
|
47 |
|
48 |
+
result = st.empty()
|
49 |
+
|
50 |
if 'few_documents' not in st.session_state:
|
51 |
st.session_state['few_documents'] = False
|
52 |
few_documents = False
|
|
|
54 |
few_documents = st.session_state['few_documents']
|
55 |
|
56 |
if button:
|
|
|
57 |
query = translate(query_pt, 'pt', 'en') if portuguese else query
|
58 |
try:
|
59 |
+
text = extract(query, search_model=search_model)
|
|
|
60 |
except FewDocumentsError as e:
|
61 |
few_documents = True
|
62 |
st.session_state['few_documents'] = True
|
|
|
64 |
st.session_state['msg'] = e.msg
|
65 |
else:
|
66 |
|
67 |
+
summary = summarize(text, summ_model, tokenizer)
|
|
|
|
|
|
|
68 |
|
69 |
if portuguese:
|
70 |
+
result.markdown(f'Seu resumo para "{query_pt}":\n\n> {translate(summary, "en", "pt")}')
|
71 |
else:
|
72 |
+
result.markdown(f'Your summary for "{query}":\n\n> {summary}')
|
73 |
+
|
74 |
+
Timer.show_total()
|
75 |
|
76 |
|
77 |
if few_documents:
|
78 |
st.warning(st.session_state['msg'])
|
79 |
if st.button('Prosseguir'):
|
80 |
+
text = extract(query, search_model=search_model, extracted_documents=st.session_state['documents'])
|
81 |
+
summary = summarize(text, summ_model, tokenizer)
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
if portuguese:
|
84 |
+
result.markdown(f'Seu resumo para "{query_pt}":\n\n> {translate(summary, "en", "pt")}')
|
85 |
else:
|
86 |
+
result.markdown(f'Your summary for "{query}":\n\n> {summary}')
|
87 |
|
88 |
st.session_state['few_documents'] = False
|
89 |
few_documents = False
|
extractor/extract.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
from ._utils import FewDocumentsError
|
2 |
from ._utils import document_extraction, paragraph_extraction, semantic_search
|
|
|
3 |
from corpora import gen_corpus
|
4 |
from nltk.corpus import stopwords
|
5 |
from nltk.tokenize import word_tokenize
|
6 |
import string
|
7 |
|
|
|
8 |
def extract(query: str, search_model, n: int=3, extracted_documents: list=None) -> str:
|
9 |
"""Extract n paragraphs from the corpus using the given query.
|
10 |
|
@@ -16,7 +18,8 @@ def extract(query: str, search_model, n: int=3, extracted_documents: list=None)
|
|
16 |
str: String containing the n most relevant paragraphs joined by line breaks
|
17 |
"""
|
18 |
# Open corpus
|
19 |
-
corpus
|
|
|
20 |
|
21 |
# Setup query
|
22 |
stop_words = set(stopwords.words('english'))
|
@@ -25,36 +28,37 @@ def extract(query: str, search_model, n: int=3, extracted_documents: list=None)
|
|
25 |
keywords = [keyword for keyword in tokens_without_sw if keyword not in string.punctuation]
|
26 |
|
27 |
# Gross search
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
36 |
|
37 |
# First semantc search (over documents)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
44 |
|
45 |
# Second semantic search (over paragraphs)
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
)
|
58 |
|
59 |
text = '\n'.join(selected_paragraphs[:n])
|
60 |
|
|
|
1 |
from ._utils import FewDocumentsError
|
2 |
from ._utils import document_extraction, paragraph_extraction, semantic_search
|
3 |
+
from utils.timing import Timer
|
4 |
from corpora import gen_corpus
|
5 |
from nltk.corpus import stopwords
|
6 |
from nltk.tokenize import word_tokenize
|
7 |
import string
|
8 |
|
9 |
+
@Timer.time_it('extra莽茫o', 'extraction')
|
10 |
def extract(query: str, search_model, n: int=3, extracted_documents: list=None) -> str:
|
11 |
"""Extract n paragraphs from the corpus using the given query.
|
12 |
|
|
|
18 |
str: String containing the n most relevant paragraphs joined by line breaks
|
19 |
"""
|
20 |
# Open corpus
|
21 |
+
with Timer('gera莽茫o do corpus', 'corpus generation'):
|
22 |
+
corpus = gen_corpus(query)
|
23 |
|
24 |
# Setup query
|
25 |
stop_words = set(stopwords.words('english'))
|
|
|
28 |
keywords = [keyword for keyword in tokens_without_sw if keyword not in string.punctuation]
|
29 |
|
30 |
# Gross search
|
31 |
+
with Timer('busca exaustiva', 'exhaustive search'):
|
32 |
+
if not extracted_documents:
|
33 |
+
extracted_documents, documents_empty, documents_sizes = document_extraction(
|
34 |
+
dataset=corpus,
|
35 |
+
query=query,
|
36 |
+
keywords=keywords,
|
37 |
+
min_document_size=0,
|
38 |
+
min_just_one_paragraph_size=0
|
39 |
+
)
|
40 |
|
41 |
# First semantc search (over documents)
|
42 |
+
with Timer('busca semantica nos documentos', 'semantic search over documents'):
|
43 |
+
selected_documents, documents_distances = semantic_search(
|
44 |
+
model=search_model,
|
45 |
+
query=query,
|
46 |
+
files=extracted_documents,
|
47 |
+
number_of_similar_files=10
|
48 |
+
)
|
49 |
|
50 |
# Second semantic search (over paragraphs)
|
51 |
+
with Timer('busca semantica nos par谩grafos', 'semantic search over paragraphs'):
|
52 |
+
paragraphs = paragraph_extraction(
|
53 |
+
documents=selected_documents,
|
54 |
+
min_paragraph_size=20,
|
55 |
+
)
|
56 |
+
selected_paragraphs, paragraphs_distances = semantic_search(
|
57 |
+
model=search_model,
|
58 |
+
query=query,
|
59 |
+
files=paragraphs,
|
60 |
+
number_of_similar_files=10
|
61 |
+
)
|
|
|
62 |
|
63 |
text = '\n'.join(selected_paragraphs[:n])
|
64 |
|
summarizer/summarize.py
CHANGED
@@ -1,4 +1,6 @@
|
|
|
|
1 |
|
|
|
2 |
def summarize(text: str, model, tokenizer) -> str:
|
3 |
"""
|
4 |
Generate a summary based from the given text
|
|
|
1 |
+
from utils.timing import Timer
|
2 |
|
3 |
+
@Timer.time_it('abstra莽茫o', 'abstraction')
|
4 |
def summarize(text: str, model, tokenizer) -> str:
|
5 |
"""
|
6 |
Generate a summary based from the given text
|
translation/translation.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
from deep_translator import GoogleTranslator
|
2 |
from easynmt import EasyNMT
|
|
|
3 |
|
|
|
4 |
def translate(text, source_language, target_language):
|
5 |
try:
|
6 |
print("Trying to use Google Translator...")
|
|
|
1 |
from deep_translator import GoogleTranslator
|
2 |
from easynmt import EasyNMT
|
3 |
+
from utils.timing import Timer
|
4 |
|
5 |
+
@Timer.time_it('tradu莽茫o', 'translation')
|
6 |
def translate(text, source_language, target_language):
|
7 |
try:
|
8 |
print("Trying to use Google Translator...")
|
utils/__init__.py
ADDED
File without changes
|
utils/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (132 Bytes). View file
|
|
utils/__pycache__/timing.cpython-39.pyc
ADDED
Binary file (2.89 kB). View file
|
|
utils/timing.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import streamlit as st
|
3 |
+
from os import environ
|
4 |
+
|
5 |
+
class Timer():
|
6 |
+
total = 0
|
7 |
+
expander = None
|
8 |
+
def __init__(self, pt_name, en_name):
|
9 |
+
self.pt_name = pt_name
|
10 |
+
self.en_name = en_name
|
11 |
+
if environ['PORTUGUESE'] == 'true':
|
12 |
+
self.portuguese = True
|
13 |
+
elif environ['PORTUGUESE'] == 'false':
|
14 |
+
self.portuguese = False
|
15 |
+
else:
|
16 |
+
raise EnvironmentError
|
17 |
+
if not Timer.expander:
|
18 |
+
if self.portuguese:
|
19 |
+
Timer.expander = st.expander('Ver progresso')
|
20 |
+
else:
|
21 |
+
Timer.expander = st.expander('See progress')
|
22 |
+
self.display = Timer.expander.empty()
|
23 |
+
|
24 |
+
def __enter__(self):
|
25 |
+
if self.portuguese:
|
26 |
+
self.display.info(f'Executando "{self.pt_name}"...')
|
27 |
+
else:
|
28 |
+
self.display.info(f'Running "{self.en_name}"...')
|
29 |
+
self.start_time = time.time()
|
30 |
+
|
31 |
+
def __exit__(self, type, value, traceback):
|
32 |
+
end_time = time.time()
|
33 |
+
elapsed_time = end_time - self.start_time
|
34 |
+
Timer.total += elapsed_time
|
35 |
+
self.display.empty()
|
36 |
+
if self.portuguese:
|
37 |
+
Timer.expander.info(f'"{self.pt_name}" terminou em {elapsed_time:.2f} s')
|
38 |
+
else:
|
39 |
+
Timer.expander.info(f'"{self.en_name}" finished in {elapsed_time:.2f} s')
|
40 |
+
|
41 |
+
# for manually starting the timer
|
42 |
+
def start(self):
|
43 |
+
if self.portuguese:
|
44 |
+
self.display.warning(f'Executando "{self.pt_name}"...')
|
45 |
+
else:
|
46 |
+
self.display.warning(f'Running "{self.en_name}"...')
|
47 |
+
self.start_time = time.time()
|
48 |
+
|
49 |
+
# for manually stopping the timer
|
50 |
+
def stop(self):
|
51 |
+
end_time = time.time()
|
52 |
+
elapsed_time = end_time - self.start_time
|
53 |
+
Timer.total += elapsed_time
|
54 |
+
self.display.empty()
|
55 |
+
if self.portuguese:
|
56 |
+
Timer.expander.warning(f'"{self.pt_name}" terminou em {elapsed_time:.2f} s')
|
57 |
+
else:
|
58 |
+
Timer.expander.warning(f'"{self.en_name}" finished in {elapsed_time:.2f} s')
|
59 |
+
|
60 |
+
def reset():
|
61 |
+
Timer.total = 0
|
62 |
+
Timer.expander = None
|
63 |
+
|
64 |
+
def show_total():
|
65 |
+
if environ['PORTUGUESE'] == 'true':
|
66 |
+
Timer.expander.success(f'Tempo de execu莽茫o total: {Timer.total:.2f} s')
|
67 |
+
elif environ['PORTUGUESE'] == 'false':
|
68 |
+
Timer.expander.success(f'Total elapsed time: {Timer.total:.2f} s')
|
69 |
+
|
70 |
+
def time_it(pt_name, en_name):
|
71 |
+
def decorator(func):
|
72 |
+
def wrapper(*args, **kwargs):
|
73 |
+
timer = Timer(pt_name, en_name)
|
74 |
+
timer.start()
|
75 |
+
result = func(*args, **kwargs)
|
76 |
+
timer.stop()
|
77 |
+
return result
|
78 |
+
return wrapper
|
79 |
+
return decorator
|