import requests import pandas as pd from tqdm.auto import tqdm import streamlit as st from huggingface_hub import HfApi, hf_hub_download from huggingface_hub.repocard import metadata_load def make_clickable(model_name): link = "https://huggingface.co/" + model_name return f'{model_name}' def get_model_ids(): api = HfApi() # TODO: switch to hf-leaderboards for the final version. models = api.list_models(filter="hf-asr-leaderboard") model_ids = [x.modelId for x in models] return model_ids def get_metadata(model_id): try: readme_path = hf_hub_download(model_id, filename="README.md") return metadata_load(readme_path) except requests.exceptions.HTTPError: # 404 README.md not found return None def parse_metric_value(value): if isinstance(value, str): "".join(value.split("%")) try: value = float(value) except: # noqa: E722 value = None elif isinstance(value, list): if len(value) > 0: value = value[0] else: value = None value = round(value, 2) if value is not None else None return value def parse_metrics_rows(meta): if "model-index" not in meta: return None for result in meta["model-index"][0]["results"]: if "dataset" not in result or "metrics" not in result: continue dataset = result["dataset"]["type"] if "args" not in result["dataset"]: continue row = {"dataset": dataset} for metric in result["metrics"]: type = metric["type"].lower().strip() value = parse_metric_value(metric["value"]) if value is None: continue if type not in row or value < row[type]: # overwrite the metric if the new value is lower (e.g. with LM) row[type] = value yield row @st.cache(ttl=600) def get_data(): data = [] model_ids = get_model_ids() for model_id in tqdm(model_ids): meta = get_metadata(model_id) if meta is None: continue for row in parse_metrics_rows(meta): if row is None: continue row["model_id"] = model_id data.append(row) return pd.DataFrame.from_records(data) dataframe = get_data() selectable_datasets = list(set(dataframe.dataset.tolist())) st.markdown("# 🤗 Leaderboards") dataset = st.sidebar.selectbox( "Dataset", selectable_datasets, index=selectable_datasets.index("common_voice"), ) dataset_df = dataframe[dataframe.dataset == dataset] dataset_df = dataset_df.dropna(axis="columns", how="all") metric = st.sidebar.selectbox( "Metric", list(filter(lambda column: column not in ("model_id", "dataset"), dataset_df.columns)), ) dataset_df = dataset_df.filter(["model_id", metric]) dataset_df = dataset_df.dropna() dataset_df = dataset_df.sort_values(by=metric, ascending=False) st.markdown( "Please click on the model's name to be redirected to its model card which includes documentation and examples on how to use it." ) # display the model ranks dataset_df = dataset_df.reset_index(drop=True) dataset_df.index += 1 # turn the model ids into clickable links dataset_df["model_id"] = dataset_df["model_id"].apply(make_clickable) table_html = dataset_df.to_html(escape=False) table_html = table_html.replace("