Spaces:
Running
Running
Commit
·
0558cbb
1
Parent(s):
854b7af
added Sentiment Analysis
Browse files- app.py +2 -0
- backend/sa.py +19 -0
- backend/sa_utils.py +510 -0
- backend/services.py +177 -0
- backend/utils.py +10 -0
- requirements.txt +3 -1
app.py
CHANGED
|
@@ -4,6 +4,7 @@ import streamlit as st
|
|
| 4 |
import backend.aragpt
|
| 5 |
import backend.home
|
| 6 |
import backend.processor
|
|
|
|
| 7 |
from backend.utils import get_current_ram_usage
|
| 8 |
|
| 9 |
st.set_page_config(
|
|
@@ -14,6 +15,7 @@ PAGES = {
|
|
| 14 |
"Home": backend.home,
|
| 15 |
"Arabic Text Preprocessor": backend.processor,
|
| 16 |
"Arabic Language Generation": backend.aragpt,
|
|
|
|
| 17 |
}
|
| 18 |
|
| 19 |
|
|
|
|
| 4 |
import backend.aragpt
|
| 5 |
import backend.home
|
| 6 |
import backend.processor
|
| 7 |
+
import backend.sa
|
| 8 |
from backend.utils import get_current_ram_usage
|
| 9 |
|
| 10 |
st.set_page_config(
|
|
|
|
| 15 |
"Home": backend.home,
|
| 16 |
"Arabic Text Preprocessor": backend.processor,
|
| 17 |
"Arabic Language Generation": backend.aragpt,
|
| 18 |
+
"Arabic Sentiment Analysis": backend.sa,
|
| 19 |
}
|
| 20 |
|
| 21 |
|
backend/sa.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from .services import SentimentAnalyzer
|
| 3 |
+
from functools import lru_cache
|
| 4 |
+
|
| 5 |
+
# @st.cache(allow_output_mutation=False, hash_funcs={Tokenizer: str})
|
| 6 |
+
@lru_cache(maxsize=1)
|
| 7 |
+
def load_text_generator():
|
| 8 |
+
predictor = SentimentAnalyzer()
|
| 9 |
+
return predictor
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
predictor = load_text_generator()
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def write():
|
| 16 |
+
input_text = st.text_input("Enter your text here:", key="Fuck you")
|
| 17 |
+
if st.button("Predict"):
|
| 18 |
+
with st.spinner("Predicting..."):
|
| 19 |
+
prediction, score, all_score = predictor.predict([input_text])
|
backend/sa_utils.py
ADDED
|
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from contextlib import contextmanager
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from fuzzysearch import find_near_matches
|
| 8 |
+
from pyarabic import araby
|
| 9 |
+
from torch import nn
|
| 10 |
+
from transformers import AutoTokenizer, BertModel, BertPreTrainedModel, pipeline
|
| 11 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
| 12 |
+
|
| 13 |
+
from .preprocess import ArabertPreprocessor, url_regexes, user_mention_regex
|
| 14 |
+
|
| 15 |
+
multiple_char_pattern = re.compile(r"(.)\1{2,}", re.DOTALL)
|
| 16 |
+
|
| 17 |
+
# ASAD-NEW_AraBERT_PREP-Balanced
|
| 18 |
+
class NewArabicPreprocessorBalanced(ArabertPreprocessor):
|
| 19 |
+
def __init__(
|
| 20 |
+
self,
|
| 21 |
+
model_name: str,
|
| 22 |
+
keep_emojis: bool = False,
|
| 23 |
+
remove_html_markup: bool = True,
|
| 24 |
+
replace_urls_emails_mentions: bool = True,
|
| 25 |
+
strip_tashkeel: bool = True,
|
| 26 |
+
strip_tatweel: bool = True,
|
| 27 |
+
insert_white_spaces: bool = True,
|
| 28 |
+
remove_non_digit_repetition: bool = True,
|
| 29 |
+
replace_slash_with_dash: bool = None,
|
| 30 |
+
map_hindi_numbers_to_arabic: bool = None,
|
| 31 |
+
apply_farasa_segmentation: bool = None,
|
| 32 |
+
):
|
| 33 |
+
if "UBC-NLP" in model_name or "CAMeL-Lab" in model_name:
|
| 34 |
+
keep_emojis = True
|
| 35 |
+
remove_non_digit_repetition = True
|
| 36 |
+
super().__init__(
|
| 37 |
+
model_name=model_name,
|
| 38 |
+
keep_emojis=keep_emojis,
|
| 39 |
+
remove_html_markup=remove_html_markup,
|
| 40 |
+
replace_urls_emails_mentions=replace_urls_emails_mentions,
|
| 41 |
+
strip_tashkeel=strip_tashkeel,
|
| 42 |
+
strip_tatweel=strip_tatweel,
|
| 43 |
+
insert_white_spaces=insert_white_spaces,
|
| 44 |
+
remove_non_digit_repetition=remove_non_digit_repetition,
|
| 45 |
+
replace_slash_with_dash=replace_slash_with_dash,
|
| 46 |
+
map_hindi_numbers_to_arabic=map_hindi_numbers_to_arabic,
|
| 47 |
+
apply_farasa_segmentation=apply_farasa_segmentation,
|
| 48 |
+
)
|
| 49 |
+
self.true_model_name = model_name
|
| 50 |
+
|
| 51 |
+
def preprocess(self, text):
|
| 52 |
+
if "UBC-NLP" in self.true_model_name:
|
| 53 |
+
return self.ubc_prep(text)
|
| 54 |
+
|
| 55 |
+
def ubc_prep(self, text):
|
| 56 |
+
text = re.sub("\s", " ", text)
|
| 57 |
+
text = text.replace("\\n", " ")
|
| 58 |
+
text = text.replace("\\r", " ")
|
| 59 |
+
text = araby.strip_tashkeel(text)
|
| 60 |
+
text = araby.strip_tatweel(text)
|
| 61 |
+
# replace all possible URLs
|
| 62 |
+
for reg in url_regexes:
|
| 63 |
+
text = re.sub(reg, " URL ", text)
|
| 64 |
+
text = re.sub("(URL\s*)+", " URL ", text)
|
| 65 |
+
# replace mentions with USER
|
| 66 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
| 67 |
+
text = re.sub("(USER\s*)+", " USER ", text)
|
| 68 |
+
# replace hashtags with HASHTAG
|
| 69 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
| 70 |
+
text = text.replace("#", " HASH ")
|
| 71 |
+
text = text.replace("_", " ")
|
| 72 |
+
text = " ".join(text.split())
|
| 73 |
+
# text = re.sub("\B\\[Uu]\w+", "", text)
|
| 74 |
+
text = text.replace("\\U0001f97a", "🥺")
|
| 75 |
+
text = text.replace("\\U0001f928", "🤨")
|
| 76 |
+
text = text.replace("\\U0001f9d8", "😀")
|
| 77 |
+
text = text.replace("\\U0001f975", "😥")
|
| 78 |
+
text = text.replace("\\U0001f92f", "😲")
|
| 79 |
+
text = text.replace("\\U0001f92d", "🤭")
|
| 80 |
+
text = text.replace("\\U0001f9d1", "😐")
|
| 81 |
+
text = text.replace("\\U000e0067", "")
|
| 82 |
+
text = text.replace("\\U000e006e", "")
|
| 83 |
+
text = text.replace("\\U0001f90d", "♥")
|
| 84 |
+
text = text.replace("\\U0001f973", "🎉")
|
| 85 |
+
text = text.replace("\\U0001fa79", "")
|
| 86 |
+
text = text.replace("\\U0001f92b", "🤐")
|
| 87 |
+
text = text.replace("\\U0001f9da", "🦋")
|
| 88 |
+
text = text.replace("\\U0001f90e", "♥")
|
| 89 |
+
text = text.replace("\\U0001f9d0", "🧐")
|
| 90 |
+
text = text.replace("\\U0001f9cf", "")
|
| 91 |
+
text = text.replace("\\U0001f92c", "😠")
|
| 92 |
+
text = text.replace("\\U0001f9f8", "😸")
|
| 93 |
+
text = text.replace("\\U0001f9b6", "💩")
|
| 94 |
+
text = text.replace("\\U0001f932", "🤲")
|
| 95 |
+
text = text.replace("\\U0001f9e1", "🧡")
|
| 96 |
+
text = text.replace("\\U0001f974", "☹")
|
| 97 |
+
text = text.replace("\\U0001f91f", "")
|
| 98 |
+
text = text.replace("\\U0001f9fb", "💩")
|
| 99 |
+
text = text.replace("\\U0001f92a", "🤪")
|
| 100 |
+
text = text.replace("\\U0001f9fc", "")
|
| 101 |
+
text = text.replace("\\U000e0065", "")
|
| 102 |
+
text = text.replace("\\U0001f92e", "💩")
|
| 103 |
+
text = text.replace("\\U000e007f", "")
|
| 104 |
+
text = text.replace("\\U0001f970", "🥰")
|
| 105 |
+
text = text.replace("\\U0001f929", "🤩")
|
| 106 |
+
text = text.replace("\\U0001f6f9", "")
|
| 107 |
+
text = text.replace("🤍", "♥")
|
| 108 |
+
text = text.replace("🦠", "😷")
|
| 109 |
+
text = text.replace("🤢", "مقرف")
|
| 110 |
+
text = text.replace("🤮", "مقرف")
|
| 111 |
+
text = text.replace("🕠", "⌚")
|
| 112 |
+
text = text.replace("🤬", "😠")
|
| 113 |
+
text = text.replace("🤧", "😷")
|
| 114 |
+
text = text.replace("🥳", "🎉")
|
| 115 |
+
text = text.replace("🥵", "🔥")
|
| 116 |
+
text = text.replace("🥴", "☹")
|
| 117 |
+
text = text.replace("🤫", "🤐")
|
| 118 |
+
text = text.replace("🤥", "كذاب")
|
| 119 |
+
text = text.replace("\\u200d", " ")
|
| 120 |
+
text = text.replace("u200d", " ")
|
| 121 |
+
text = text.replace("\\u200c", " ")
|
| 122 |
+
text = text.replace("u200c", " ")
|
| 123 |
+
text = text.replace('"', "'")
|
| 124 |
+
text = text.replace("\\xa0", "")
|
| 125 |
+
text = text.replace("\\u2066", " ")
|
| 126 |
+
text = re.sub("\B\\\[Uu]\w+", "", text)
|
| 127 |
+
text = super(NewArabicPreprocessorBalanced, self).preprocess(text)
|
| 128 |
+
|
| 129 |
+
text = " ".join(text.split())
|
| 130 |
+
return text
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
"""CNNMarbertArabicPreprocessor"""
|
| 134 |
+
# ASAD-CNN_MARBERT
|
| 135 |
+
class CNNMarbertArabicPreprocessor(ArabertPreprocessor):
|
| 136 |
+
def __init__(
|
| 137 |
+
self,
|
| 138 |
+
model_name,
|
| 139 |
+
keep_emojis=False,
|
| 140 |
+
remove_html_markup=True,
|
| 141 |
+
replace_urls_emails_mentions=True,
|
| 142 |
+
remove_elongations=True,
|
| 143 |
+
):
|
| 144 |
+
if "UBC-NLP" in model_name or "CAMeL-Lab" in model_name:
|
| 145 |
+
keep_emojis = True
|
| 146 |
+
remove_elongations = False
|
| 147 |
+
super().__init__(
|
| 148 |
+
model_name,
|
| 149 |
+
keep_emojis,
|
| 150 |
+
remove_html_markup,
|
| 151 |
+
replace_urls_emails_mentions,
|
| 152 |
+
remove_elongations,
|
| 153 |
+
)
|
| 154 |
+
self.true_model_name = model_name
|
| 155 |
+
|
| 156 |
+
def preprocess(self, text):
|
| 157 |
+
if "UBC-NLP" in self.true_model_name:
|
| 158 |
+
return self.ubc_prep(text)
|
| 159 |
+
|
| 160 |
+
def ubc_prep(self, text):
|
| 161 |
+
text = re.sub("\s", " ", text)
|
| 162 |
+
text = text.replace("\\n", " ")
|
| 163 |
+
text = araby.strip_tashkeel(text)
|
| 164 |
+
text = araby.strip_tatweel(text)
|
| 165 |
+
# replace all possible URLs
|
| 166 |
+
for reg in url_regexes:
|
| 167 |
+
text = re.sub(reg, " URL ", text)
|
| 168 |
+
text = re.sub("(URL\s*)+", " URL ", text)
|
| 169 |
+
# replace mentions with USER
|
| 170 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
| 171 |
+
text = re.sub("(USER\s*)+", " USER ", text)
|
| 172 |
+
# replace hashtags with HASHTAG
|
| 173 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
| 174 |
+
text = text.replace("#", " HASH ")
|
| 175 |
+
text = text.replace("_", " ")
|
| 176 |
+
text = " ".join(text.split())
|
| 177 |
+
text = super(CNNMarbertArabicPreprocessor, self).preprocess(text)
|
| 178 |
+
text = text.replace("\u200d", " ")
|
| 179 |
+
text = text.replace("u200d", " ")
|
| 180 |
+
text = text.replace("\u200c", " ")
|
| 181 |
+
text = text.replace("u200c", " ")
|
| 182 |
+
text = text.replace('"', "'")
|
| 183 |
+
# text = re.sub('[\d\.]+', ' NUM ', text)
|
| 184 |
+
# text = re.sub('(NUM\s*)+', ' NUM ', text)
|
| 185 |
+
text = multiple_char_pattern.sub(r"\1\1", text)
|
| 186 |
+
text = " ".join(text.split())
|
| 187 |
+
return text
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
"""Trial5ArabicPreprocessor"""
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
class Trial5ArabicPreprocessor(ArabertPreprocessor):
|
| 194 |
+
def __init__(
|
| 195 |
+
self,
|
| 196 |
+
model_name,
|
| 197 |
+
keep_emojis=False,
|
| 198 |
+
remove_html_markup=True,
|
| 199 |
+
replace_urls_emails_mentions=True,
|
| 200 |
+
):
|
| 201 |
+
if "UBC-NLP" in model_name:
|
| 202 |
+
keep_emojis = True
|
| 203 |
+
super().__init__(
|
| 204 |
+
model_name, keep_emojis, remove_html_markup, replace_urls_emails_mentions
|
| 205 |
+
)
|
| 206 |
+
self.true_model_name = model_name
|
| 207 |
+
|
| 208 |
+
def preprocess(self, text):
|
| 209 |
+
if "UBC-NLP" in self.true_model_name:
|
| 210 |
+
return self.ubc_prep(text)
|
| 211 |
+
|
| 212 |
+
def ubc_prep(self, text):
|
| 213 |
+
text = re.sub("\s", " ", text)
|
| 214 |
+
text = text.replace("\\n", " ")
|
| 215 |
+
text = araby.strip_tashkeel(text)
|
| 216 |
+
text = araby.strip_tatweel(text)
|
| 217 |
+
# replace all possible URLs
|
| 218 |
+
for reg in url_regexes:
|
| 219 |
+
text = re.sub(reg, " URL ", text)
|
| 220 |
+
# replace mentions with USER
|
| 221 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
| 222 |
+
# replace hashtags with HASHTAG
|
| 223 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
| 224 |
+
text = text.replace("#", " HASH TAG ")
|
| 225 |
+
text = text.replace("_", " ")
|
| 226 |
+
text = " ".join(text.split())
|
| 227 |
+
text = super(Trial5ArabicPreprocessor, self).preprocess(text)
|
| 228 |
+
# text = text.replace("السلام عليكم"," ")
|
| 229 |
+
# text = text.replace(find_near_matches("السلام عليكم",text,max_deletions=3,max_l_dist=3)[0].matched," ")
|
| 230 |
+
return text
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
"""SarcasmArabicPreprocessor"""
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
class SarcasmArabicPreprocessor(ArabertPreprocessor):
|
| 237 |
+
def __init__(
|
| 238 |
+
self,
|
| 239 |
+
model_name,
|
| 240 |
+
keep_emojis=False,
|
| 241 |
+
remove_html_markup=True,
|
| 242 |
+
replace_urls_emails_mentions=True,
|
| 243 |
+
):
|
| 244 |
+
if "UBC-NLP" in model_name:
|
| 245 |
+
keep_emojis = True
|
| 246 |
+
super().__init__(
|
| 247 |
+
model_name, keep_emojis, remove_html_markup, replace_urls_emails_mentions
|
| 248 |
+
)
|
| 249 |
+
self.true_model_name = model_name
|
| 250 |
+
|
| 251 |
+
def preprocess(self, text):
|
| 252 |
+
if "UBC-NLP" in self.true_model_name:
|
| 253 |
+
return self.ubc_prep(text)
|
| 254 |
+
else:
|
| 255 |
+
return super(SarcasmArabicPreprocessor, self).preprocess(text)
|
| 256 |
+
|
| 257 |
+
def ubc_prep(self, text):
|
| 258 |
+
text = re.sub("\s", " ", text)
|
| 259 |
+
text = text.replace("\\n", " ")
|
| 260 |
+
text = araby.strip_tashkeel(text)
|
| 261 |
+
text = araby.strip_tatweel(text)
|
| 262 |
+
# replace all possible URLs
|
| 263 |
+
for reg in url_regexes:
|
| 264 |
+
text = re.sub(reg, " URL ", text)
|
| 265 |
+
# replace mentions with USER
|
| 266 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
| 267 |
+
# replace hashtags with HASHTAG
|
| 268 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
| 269 |
+
text = text.replace("#", " HASH TAG ")
|
| 270 |
+
text = text.replace("_", " ")
|
| 271 |
+
text = text.replace('"', " ")
|
| 272 |
+
text = " ".join(text.split())
|
| 273 |
+
text = super(SarcasmArabicPreprocessor, self).preprocess(text)
|
| 274 |
+
return text
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
"""NoAOAArabicPreprocessor"""
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
class NoAOAArabicPreprocessor(ArabertPreprocessor):
|
| 281 |
+
def __init__(
|
| 282 |
+
self,
|
| 283 |
+
model_name,
|
| 284 |
+
keep_emojis=False,
|
| 285 |
+
remove_html_markup=True,
|
| 286 |
+
replace_urls_emails_mentions=True,
|
| 287 |
+
):
|
| 288 |
+
if "UBC-NLP" in model_name:
|
| 289 |
+
keep_emojis = True
|
| 290 |
+
super().__init__(
|
| 291 |
+
model_name, keep_emojis, remove_html_markup, replace_urls_emails_mentions
|
| 292 |
+
)
|
| 293 |
+
self.true_model_name = model_name
|
| 294 |
+
|
| 295 |
+
def preprocess(self, text):
|
| 296 |
+
if "UBC-NLP" in self.true_model_name:
|
| 297 |
+
return self.ubc_prep(text)
|
| 298 |
+
else:
|
| 299 |
+
return super(NoAOAArabicPreprocessor, self).preprocess(text)
|
| 300 |
+
|
| 301 |
+
def ubc_prep(self, text):
|
| 302 |
+
text = re.sub("\s", " ", text)
|
| 303 |
+
text = text.replace("\\n", " ")
|
| 304 |
+
text = araby.strip_tashkeel(text)
|
| 305 |
+
text = araby.strip_tatweel(text)
|
| 306 |
+
# replace all possible URLs
|
| 307 |
+
for reg in url_regexes:
|
| 308 |
+
text = re.sub(reg, " URL ", text)
|
| 309 |
+
# replace mentions with USER
|
| 310 |
+
text = re.sub(user_mention_regex, " USER ", text)
|
| 311 |
+
# replace hashtags with HASHTAG
|
| 312 |
+
# text = re.sub(r"#[\w\d]+", " HASH TAG ", text)
|
| 313 |
+
text = text.replace("#", " HASH TAG ")
|
| 314 |
+
text = text.replace("_", " ")
|
| 315 |
+
text = " ".join(text.split())
|
| 316 |
+
text = super(NoAOAArabicPreprocessor, self).preprocess(text)
|
| 317 |
+
text = text.replace("السلام عليكم", " ")
|
| 318 |
+
text = text.replace("ورحمة الله وبركاته", " ")
|
| 319 |
+
matched = find_near_matches("السلام عليكم", text, max_deletions=3, max_l_dist=3)
|
| 320 |
+
if len(matched) > 0:
|
| 321 |
+
text = text.replace(matched[0].matched, " ")
|
| 322 |
+
matched = find_near_matches(
|
| 323 |
+
"ورحمة الله وبركاته", text, max_deletions=3, max_l_dist=3
|
| 324 |
+
)
|
| 325 |
+
if len(matched) > 0:
|
| 326 |
+
text = text.replace(matched[0].matched, " ")
|
| 327 |
+
return text
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class CnnBertForSequenceClassification(BertPreTrainedModel):
|
| 331 |
+
def __init__(self, config):
|
| 332 |
+
super().__init__(config)
|
| 333 |
+
self.num_labels = config.num_labels
|
| 334 |
+
self.config = config
|
| 335 |
+
|
| 336 |
+
self.bert = BertModel(config)
|
| 337 |
+
|
| 338 |
+
filter_sizes = [1, 2, 3, 4, 5]
|
| 339 |
+
num_filters = 32
|
| 340 |
+
self.convs1 = nn.ModuleList(
|
| 341 |
+
[nn.Conv2d(4, num_filters, (K, config.hidden_size)) for K in filter_sizes]
|
| 342 |
+
)
|
| 343 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 344 |
+
self.classifier = nn.Linear(len(filter_sizes) * num_filters, config.num_labels)
|
| 345 |
+
|
| 346 |
+
self.init_weights()
|
| 347 |
+
|
| 348 |
+
def forward(
|
| 349 |
+
self,
|
| 350 |
+
input_ids=None,
|
| 351 |
+
attention_mask=None,
|
| 352 |
+
token_type_ids=None,
|
| 353 |
+
position_ids=None,
|
| 354 |
+
head_mask=None,
|
| 355 |
+
inputs_embeds=None,
|
| 356 |
+
labels=None,
|
| 357 |
+
output_attentions=None,
|
| 358 |
+
output_hidden_states=None,
|
| 359 |
+
return_dict=None,
|
| 360 |
+
):
|
| 361 |
+
|
| 362 |
+
return_dict = (
|
| 363 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
outputs = self.bert(
|
| 367 |
+
input_ids,
|
| 368 |
+
attention_mask=attention_mask,
|
| 369 |
+
token_type_ids=token_type_ids,
|
| 370 |
+
position_ids=position_ids,
|
| 371 |
+
head_mask=head_mask,
|
| 372 |
+
inputs_embeds=inputs_embeds,
|
| 373 |
+
output_attentions=output_attentions,
|
| 374 |
+
output_hidden_states=output_hidden_states,
|
| 375 |
+
return_dict=return_dict,
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
x = outputs[2][-4:]
|
| 379 |
+
|
| 380 |
+
x = torch.stack(x, dim=1)
|
| 381 |
+
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs1]
|
| 382 |
+
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x]
|
| 383 |
+
x = torch.cat(x, 1)
|
| 384 |
+
x = self.dropout(x)
|
| 385 |
+
logits = self.classifier(x)
|
| 386 |
+
|
| 387 |
+
loss = None
|
| 388 |
+
if labels is not None:
|
| 389 |
+
if self.config.problem_type is None:
|
| 390 |
+
if self.num_labels == 1:
|
| 391 |
+
self.config.problem_type = "regression"
|
| 392 |
+
elif self.num_labels > 1 and (
|
| 393 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
| 394 |
+
):
|
| 395 |
+
self.config.problem_type = "single_label_classification"
|
| 396 |
+
else:
|
| 397 |
+
self.config.problem_type = "multi_label_classification"
|
| 398 |
+
|
| 399 |
+
if self.config.problem_type == "regression":
|
| 400 |
+
loss_fct = nn.MSELoss()
|
| 401 |
+
if self.num_labels == 1:
|
| 402 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 403 |
+
else:
|
| 404 |
+
loss = loss_fct(logits, labels)
|
| 405 |
+
elif self.config.problem_type == "single_label_classification":
|
| 406 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 407 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 408 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 409 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
| 410 |
+
loss = loss_fct(logits, labels)
|
| 411 |
+
if not return_dict:
|
| 412 |
+
output = (logits,) + outputs[2:]
|
| 413 |
+
return ((loss,) + output) if loss is not None else output
|
| 414 |
+
|
| 415 |
+
return SequenceClassifierOutput(
|
| 416 |
+
loss=loss,
|
| 417 |
+
logits=logits,
|
| 418 |
+
hidden_states=None,
|
| 419 |
+
attentions=outputs.attentions,
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
class CNNTextClassificationPipeline:
|
| 424 |
+
def __init__(self, model_path, device, return_all_scores=False):
|
| 425 |
+
self.model_path = model_path
|
| 426 |
+
self.model = CnnBertForSequenceClassification.from_pretrained(self.model_path)
|
| 427 |
+
# Special handling
|
| 428 |
+
self.device = torch.device("cpu" if device < 0 else f"cuda:{device}")
|
| 429 |
+
if self.device.type == "cuda":
|
| 430 |
+
self.model = self.model.to(self.device)
|
| 431 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 432 |
+
self.return_all_scores = return_all_scores
|
| 433 |
+
|
| 434 |
+
@contextmanager
|
| 435 |
+
def device_placement(self):
|
| 436 |
+
"""
|
| 437 |
+
Context Manager allowing tensor allocation on the user-specified device in framework agnostic way.
|
| 438 |
+
Returns:
|
| 439 |
+
Context manager
|
| 440 |
+
Examples::
|
| 441 |
+
# Explicitly ask for tensor allocation on CUDA device :0
|
| 442 |
+
pipe = pipeline(..., device=0)
|
| 443 |
+
with pipe.device_placement():
|
| 444 |
+
# Every framework specific tensor allocation will be done on the request device
|
| 445 |
+
output = pipe(...)
|
| 446 |
+
"""
|
| 447 |
+
|
| 448 |
+
if self.device.type == "cuda":
|
| 449 |
+
torch.cuda.set_device(self.device)
|
| 450 |
+
|
| 451 |
+
yield
|
| 452 |
+
|
| 453 |
+
def ensure_tensor_on_device(self, **inputs):
|
| 454 |
+
"""
|
| 455 |
+
Ensure PyTorch tensors are on the specified device.
|
| 456 |
+
Args:
|
| 457 |
+
inputs (keyword arguments that should be :obj:`torch.Tensor`): The tensors to place on :obj:`self.device`.
|
| 458 |
+
Return:
|
| 459 |
+
:obj:`Dict[str, torch.Tensor]`: The same as :obj:`inputs` but on the proper device.
|
| 460 |
+
"""
|
| 461 |
+
return {
|
| 462 |
+
name: tensor.to(self.device) if isinstance(tensor, torch.Tensor) else tensor
|
| 463 |
+
for name, tensor in inputs.items()
|
| 464 |
+
}
|
| 465 |
+
|
| 466 |
+
def __call__(self, text):
|
| 467 |
+
"""
|
| 468 |
+
Classify the text(s) given as inputs.
|
| 469 |
+
Args:
|
| 470 |
+
args (:obj:`str` or :obj:`List[str]`):
|
| 471 |
+
One or several texts (or one list of prompts) to classify.
|
| 472 |
+
Return:
|
| 473 |
+
A list or a list of list of :obj:`dict`: Each result comes as list of dictionaries with the following keys:
|
| 474 |
+
- **label** (:obj:`str`) -- The label predicted.
|
| 475 |
+
- **score** (:obj:`float`) -- The corresponding probability.
|
| 476 |
+
If ``self.return_all_scores=True``, one such dictionary is returned per label.
|
| 477 |
+
"""
|
| 478 |
+
# outputs = super().__call__(*args, **kwargs)
|
| 479 |
+
inputs = self.tokenizer.batch_encode_plus(
|
| 480 |
+
text,
|
| 481 |
+
add_special_tokens=True,
|
| 482 |
+
max_length=64,
|
| 483 |
+
padding=True,
|
| 484 |
+
truncation="longest_first",
|
| 485 |
+
return_tensors="pt",
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
with torch.no_grad():
|
| 489 |
+
inputs = self.ensure_tensor_on_device(**inputs)
|
| 490 |
+
predictions = self.model(**inputs)[0].cpu()
|
| 491 |
+
|
| 492 |
+
predictions = predictions.numpy()
|
| 493 |
+
|
| 494 |
+
if self.model.config.num_labels == 1:
|
| 495 |
+
scores = 1.0 / (1.0 + np.exp(-predictions))
|
| 496 |
+
else:
|
| 497 |
+
scores = np.exp(predictions) / np.exp(predictions).sum(-1, keepdims=True)
|
| 498 |
+
if self.return_all_scores:
|
| 499 |
+
return [
|
| 500 |
+
[
|
| 501 |
+
{"label": self.model.config.id2label[i], "score": score.item()}
|
| 502 |
+
for i, score in enumerate(item)
|
| 503 |
+
]
|
| 504 |
+
for item in scores
|
| 505 |
+
]
|
| 506 |
+
else:
|
| 507 |
+
return [
|
| 508 |
+
{"label": self.inv_label_map[item.argmax()], "score": item.max().item()}
|
| 509 |
+
for item in scores
|
| 510 |
+
]
|
backend/services.py
CHANGED
|
@@ -1,9 +1,17 @@
|
|
| 1 |
import json
|
| 2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import requests
|
|
|
|
| 4 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline, set_seed
|
|
|
|
| 5 |
from .modeling_gpt2 import GPT2LMHeadModel as GROVERLMHeadModel
|
| 6 |
from .preprocess import ArabertPreprocessor
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Taken and Modified from https://huggingface.co/spaces/flax-community/chef-transformer/blob/main/app.py
|
| 9 |
class TextGeneration:
|
|
@@ -170,3 +178,172 @@ class TextGeneration:
|
|
| 170 |
},
|
| 171 |
}
|
| 172 |
return self.query(payload, model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
+
from typing import List
|
| 4 |
+
|
| 5 |
+
import more_itertools
|
| 6 |
+
import pandas as pd
|
| 7 |
import requests
|
| 8 |
+
from tqdm.auto import tqdm
|
| 9 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline, set_seed
|
| 10 |
+
|
| 11 |
from .modeling_gpt2 import GPT2LMHeadModel as GROVERLMHeadModel
|
| 12 |
from .preprocess import ArabertPreprocessor
|
| 13 |
+
from .sa_utils import *
|
| 14 |
+
from .utils import download_models
|
| 15 |
|
| 16 |
# Taken and Modified from https://huggingface.co/spaces/flax-community/chef-transformer/blob/main/app.py
|
| 17 |
class TextGeneration:
|
|
|
|
| 178 |
},
|
| 179 |
}
|
| 180 |
return self.query(payload, model_name)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
class SentimentAnalyzer:
|
| 184 |
+
def __init__(self):
|
| 185 |
+
self.sa_models = [
|
| 186 |
+
"sa_trial5_1",
|
| 187 |
+
"sa_no_aoa_in_neutral",
|
| 188 |
+
"sa_cnnbert",
|
| 189 |
+
"sa_sarcasm",
|
| 190 |
+
"sar_trial10",
|
| 191 |
+
"sa_no_AOA",
|
| 192 |
+
]
|
| 193 |
+
self.model_repos = download_models(self.sa_models)
|
| 194 |
+
# fmt: off
|
| 195 |
+
self.processors = {
|
| 196 |
+
"sa_trial5_1": Trial5ArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
| 197 |
+
"sa_no_aoa_in_neutral": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
|
| 198 |
+
"sa_cnnbert": CNNMarbertArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
| 199 |
+
"sa_sarcasm": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
| 200 |
+
"sar_trial10": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
|
| 201 |
+
"sa_no_AOA": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
self.pipelines = {
|
| 205 |
+
"sa_trial5_1": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format(self.model_repos["sa_trial5_1"],i), device=-1,return_all_scores =True) for i in range(0,5)],
|
| 206 |
+
"sa_no_aoa_in_neutral": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format(self.model_repos["sa_no_aoa_in_neutral"],i), device=-1,return_all_scores =True) for i in range(0,5)],
|
| 207 |
+
"sa_cnnbert": [CNNTextClassificationPipeline("{}/train_{}/best_model".format(self.model_repos["sa_cnnbert"],i), device=-1, return_all_scores =True) for i in range(0,5)],
|
| 208 |
+
"sa_sarcasm": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format(self.model_repos["sa_sarcasm"],i), device=-1,return_all_scores =True) for i in range(0,5)],
|
| 209 |
+
"sar_trial10": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format(self.model_repos["sar_trial10"],i), device=-1,return_all_scores =True) for i in range(0,5)],
|
| 210 |
+
"sa_no_AOA": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format(self.model_repos["sa_no_aoa_in_neutral"],i), device=-1,return_all_scores =True) for i in range(0,5)],
|
| 211 |
+
}
|
| 212 |
+
# fmt: on
|
| 213 |
+
|
| 214 |
+
def get_sarcasm_label(self, texts):
|
| 215 |
+
prep = self.processors["sar_trial10"]
|
| 216 |
+
prep_texts = [prep.preprocess(x) for x in texts]
|
| 217 |
+
|
| 218 |
+
preds_df = pd.DataFrame([])
|
| 219 |
+
for i in range(0, 5):
|
| 220 |
+
preds = []
|
| 221 |
+
for s in tqdm(more_itertools.chunked(list(prep_texts), 128)):
|
| 222 |
+
preds.extend(self.pipelines["sar_trial10"][i](s))
|
| 223 |
+
preds_df[f"model_{i}"] = preds
|
| 224 |
+
|
| 225 |
+
final_labels = []
|
| 226 |
+
final_scores = []
|
| 227 |
+
for id, row in preds_df.iterrows():
|
| 228 |
+
pos_total = 0
|
| 229 |
+
neu_total = 0
|
| 230 |
+
for pred in row[:]:
|
| 231 |
+
pos_total += pred[0]["score"]
|
| 232 |
+
neu_total += pred[1]["score"]
|
| 233 |
+
|
| 234 |
+
pos_avg = pos_total / len(row[:])
|
| 235 |
+
neu_avg = neu_total / len(row[:])
|
| 236 |
+
|
| 237 |
+
final_labels.append(
|
| 238 |
+
self.pipelines["sar_trial10"][0].model.config.id2label[
|
| 239 |
+
np.argmax([pos_avg, neu_avg])
|
| 240 |
+
]
|
| 241 |
+
)
|
| 242 |
+
final_scores.append(np.max([pos_avg, neu_avg]))
|
| 243 |
+
|
| 244 |
+
return final_labels, final_scores
|
| 245 |
+
|
| 246 |
+
def get_preds_from_a_model(self, texts: List[str], model_name):
|
| 247 |
+
prep = self.processors[model_name]
|
| 248 |
+
|
| 249 |
+
prep_texts = [prep.preprocess(x) for x in texts]
|
| 250 |
+
if model_name == "sa_sarcasm":
|
| 251 |
+
sarcasm_label, _ = self.get_preds_from_sarcasm(texts, "sar_trial10")
|
| 252 |
+
sarcastic_map = {"Not_Sarcastic": "غير ساخر", "Sarcastic": "ساخر"}
|
| 253 |
+
labeled_prep_texts = []
|
| 254 |
+
for t, l in zip(prep_texts, sarcasm_label):
|
| 255 |
+
labeled_prep_texts.append(sarcastic_map[l] + " [SEP] " + t)
|
| 256 |
+
|
| 257 |
+
preds_df = pd.DataFrame([])
|
| 258 |
+
for i in range(0, 5):
|
| 259 |
+
preds = []
|
| 260 |
+
for s in tqdm(more_itertools.chunked(list(prep_texts), 128)):
|
| 261 |
+
preds.extend(self.pipelines[model_name][i](s))
|
| 262 |
+
preds_df[f"model_{i}"] = preds
|
| 263 |
+
|
| 264 |
+
final_labels = []
|
| 265 |
+
final_scores = []
|
| 266 |
+
final_scores_list = []
|
| 267 |
+
for id, row in preds_df.iterrows():
|
| 268 |
+
pos_total = 0
|
| 269 |
+
neg_total = 0
|
| 270 |
+
neu_total = 0
|
| 271 |
+
for pred in row[2:]:
|
| 272 |
+
pos_total += pred[0]["score"]
|
| 273 |
+
neu_total += pred[1]["score"]
|
| 274 |
+
neg_total += pred[2]["score"]
|
| 275 |
+
|
| 276 |
+
pos_avg = pos_total / 5
|
| 277 |
+
neu_avg = neu_total / 5
|
| 278 |
+
neg_avg = neg_total / 5
|
| 279 |
+
|
| 280 |
+
if model_name == "sa_no_aoa_in_neutral":
|
| 281 |
+
final_labels.append(
|
| 282 |
+
self.pipelines[model_name][0].model.config.id2label[
|
| 283 |
+
np.argmax([neu_avg, neg_avg, pos_avg])
|
| 284 |
+
]
|
| 285 |
+
)
|
| 286 |
+
else:
|
| 287 |
+
final_labels.append(
|
| 288 |
+
self.pipelines[model_name][0].model.config.id2label[
|
| 289 |
+
np.argmax([pos_avg, neu_avg, neg_avg])
|
| 290 |
+
]
|
| 291 |
+
)
|
| 292 |
+
final_scores.append(np.max([pos_avg, neu_avg, neg_avg]))
|
| 293 |
+
final_scores_list.append((pos_avg, neu_avg, neg_avg))
|
| 294 |
+
|
| 295 |
+
return final_labels, final_scores, final_scores_list
|
| 296 |
+
|
| 297 |
+
def predict(self, texts: List[str]):
|
| 298 |
+
(
|
| 299 |
+
new_balanced_label,
|
| 300 |
+
new_balanced_score,
|
| 301 |
+
new_balanced_score_list,
|
| 302 |
+
) = self.get_preds_from_a_model(texts, "sa_no_aoa_in_neutral")
|
| 303 |
+
(
|
| 304 |
+
cnn_marbert_label,
|
| 305 |
+
cnn_marbert_score,
|
| 306 |
+
cnn_marbert_score_list,
|
| 307 |
+
) = self.get_preds_from_a_model(texts, "sa_cnnbert")
|
| 308 |
+
trial5_label, trial5_score, trial5_score_list = self.get_preds_from_a_model(
|
| 309 |
+
texts, "sa_trial5_1"
|
| 310 |
+
)
|
| 311 |
+
no_aoa_label, no_aoa_score, no_aoa_score_list = self.get_preds_from_a_model(
|
| 312 |
+
texts, "sa_no_AOA"
|
| 313 |
+
)
|
| 314 |
+
sarcasm_label, sarcasm_score, sarcasm_score_list = self.get_preds_from_a_model(
|
| 315 |
+
texts, "sa_sarcasm"
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
id_label_map = {0: "Positive", 1: "Neutral", 2: "Negative"}
|
| 319 |
+
|
| 320 |
+
final_ensemble_prediction = []
|
| 321 |
+
final_ensemble_score = []
|
| 322 |
+
final_ensemble_all_score = []
|
| 323 |
+
for entry in zip(
|
| 324 |
+
new_balanced_score_list,
|
| 325 |
+
cnn_marbert_score_list,
|
| 326 |
+
trial5_score_list,
|
| 327 |
+
no_aoa_score_list,
|
| 328 |
+
sarcasm_score_list,
|
| 329 |
+
):
|
| 330 |
+
pos_score = 0
|
| 331 |
+
neu_score = 0
|
| 332 |
+
neg_score = 0
|
| 333 |
+
for s in entry:
|
| 334 |
+
pos_score += s[0] * 1.57
|
| 335 |
+
neu_score += s[1] * 0.98
|
| 336 |
+
neg_score += s[2] * 0.93
|
| 337 |
+
|
| 338 |
+
# weighted 2
|
| 339 |
+
# pos_score += s[0]*1.67
|
| 340 |
+
# neu_score += s[1]
|
| 341 |
+
# neg_score += s[2]*0.95
|
| 342 |
+
|
| 343 |
+
final_ensemble_prediction.append(
|
| 344 |
+
id_label_map[np.argmax([pos_score, neu_score, neg_score])]
|
| 345 |
+
)
|
| 346 |
+
final_ensemble_score.append(np.max([pos_score, neu_score, neg_score]))
|
| 347 |
+
final_ensemble_all_score.append((pos_score, neu_score, neg_score))
|
| 348 |
+
|
| 349 |
+
return final_ensemble_prediction, final_ensemble_score, final_ensemble_all_score
|
backend/utils.py
CHANGED
|
@@ -1,6 +1,16 @@
|
|
| 1 |
import psutil
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
def get_current_ram_usage():
|
| 5 |
ram = psutil.virtual_memory()
|
| 6 |
return ram.available / 1024 / 1024 / 1024, ram.total / 1024 / 1024 / 1024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import psutil
|
| 2 |
+
from huggingface_hub import Repository
|
| 3 |
|
| 4 |
|
| 5 |
def get_current_ram_usage():
|
| 6 |
ram = psutil.virtual_memory()
|
| 7 |
return ram.available / 1024 / 1024 / 1024, ram.total / 1024 / 1024 / 1024
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def download_models(models):
|
| 11 |
+
model_dirs = {}
|
| 12 |
+
for model in models:
|
| 13 |
+
model_dirs[model] = Repository(
|
| 14 |
+
model, clone_from=f"https://huggingface.co/researchaccount/{model}"
|
| 15 |
+
)
|
| 16 |
+
return model_dirs
|
requirements.txt
CHANGED
|
@@ -7,4 +7,6 @@ emoji==1.4.2
|
|
| 7 |
awesome_streamlit
|
| 8 |
torch==1.9.0
|
| 9 |
transformers==4.10.0
|
| 10 |
-
psutil==5.8.0
|
|
|
|
|
|
|
|
|
| 7 |
awesome_streamlit
|
| 8 |
torch==1.9.0
|
| 9 |
transformers==4.10.0
|
| 10 |
+
psutil==5.8.0
|
| 11 |
+
fuzzysearch==0.7.3
|
| 12 |
+
more-itertools==8.9.0
|