import sys,os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import numpy as np import argparse import torch import librosa import requests from tqdm import tqdm from hubert import hubert_model def load_audio(file: str, sr: int = 16000): x, sr = librosa.load(file, sr=sr) return x def load_model(path, device): model = hubert_model.hubert_soft(path) model.eval() if not (device == "cpu"): model.half() model.to(device) return model def check_and_download_model(): temp_dir = "/tmp" model_path = os.path.join(temp_dir, "hubert-soft-0d54a1f4.pt") if os.path.exists(model_path): return f"モデルは既に存在します: {model_path}" url = "https://github.com/bshall/hubert/releases/download/v0.1/hubert-soft-0d54a1f4.pt" try: response = requests.get(url, stream=True) response.raise_for_status() total_size = int(response.headers.get('content-length', 0)) with open(model_path, 'wb') as f, tqdm( desc=model_path, total=total_size, unit='iB', unit_scale=True, unit_divisor=1024, ) as pbar: for data in response.iter_content(chunk_size=1024): size = f.write(data) pbar.update(size) return f"モデルのダウンロードが完了しました: {model_path}" except Exception as e: return f"エラーが発生しました: {e}" def pred_vec(model, wavPath, vecPath, device): audio = load_audio(wavPath) audln = audio.shape[0] vec_a = [] idx_s = 0 while (idx_s + 20 * 16000 < audln): feats = audio[idx_s:idx_s + 20 * 16000] feats = torch.from_numpy(feats).to(device) feats = feats[None, None, :] if not (device == "cpu"): feats = feats.half() with torch.no_grad(): vec = model.units(feats).squeeze().data.cpu().float().numpy() vec_a.extend(vec) idx_s = idx_s + 20 * 16000 if (idx_s < audln): feats = audio[idx_s:audln] feats = torch.from_numpy(feats).to(device) feats = feats[None, None, :] if not (device == "cpu"): feats = feats.half() with torch.no_grad(): vec = model.units(feats).squeeze().data.cpu().float().numpy() # print(vec.shape) # [length, dim=256] hop=320 vec_a.extend(vec) np.save(vecPath, vec_a, allow_pickle=False) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-w", "--wav", help="wav", dest="wav", required=True) parser.add_argument("-v", "--vec", help="vec", dest="vec", required=True) args = parser.parse_args() print(args.wav) print(args.vec) wavPath = args.wav vecPath = args.vec device = "cuda" if torch.cuda.is_available() else "cpu" _ = check_and_download_model() hubert = load_model("/tmp/hubert-soft-0d54a1f4.pt", device) pred_vec(hubert, wavPath, vecPath, device)