Spaces:
Running
Running
import sys,os | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
import numpy as np | |
import argparse | |
import torch | |
import librosa | |
import requests | |
from tqdm import tqdm | |
from hubert import hubert_model | |
def load_audio(file: str, sr: int = 16000): | |
x, sr = librosa.load(file, sr=sr) | |
return x | |
def load_model(path, device): | |
model = hubert_model.hubert_soft(path) | |
model.eval() | |
if not (device == "cpu"): | |
model.half() | |
model.to(device) | |
return model | |
def check_and_download_model(): | |
temp_dir = "/tmp" | |
model_path = os.path.join(temp_dir, "hubert-soft-0d54a1f4.pt") | |
if os.path.exists(model_path): | |
return f"モデルは既に存在します: {model_path}" | |
url = "https://github.com/bshall/hubert/releases/download/v0.1/hubert-soft-0d54a1f4.pt" | |
try: | |
response = requests.get(url, stream=True) | |
response.raise_for_status() | |
total_size = int(response.headers.get('content-length', 0)) | |
with open(model_path, 'wb') as f, tqdm( | |
desc=model_path, | |
total=total_size, | |
unit='iB', | |
unit_scale=True, | |
unit_divisor=1024, | |
) as pbar: | |
for data in response.iter_content(chunk_size=1024): | |
size = f.write(data) | |
pbar.update(size) | |
return f"モデルのダウンロードが完了しました: {model_path}" | |
except Exception as e: | |
return f"エラーが発生しました: {e}" | |
def pred_vec(model, wavPath, vecPath, device): | |
audio = load_audio(wavPath) | |
audln = audio.shape[0] | |
vec_a = [] | |
idx_s = 0 | |
while (idx_s + 20 * 16000 < audln): | |
feats = audio[idx_s:idx_s + 20 * 16000] | |
feats = torch.from_numpy(feats).to(device) | |
feats = feats[None, None, :] | |
if not (device == "cpu"): | |
feats = feats.half() | |
with torch.no_grad(): | |
vec = model.units(feats).squeeze().data.cpu().float().numpy() | |
vec_a.extend(vec) | |
idx_s = idx_s + 20 * 16000 | |
if (idx_s < audln): | |
feats = audio[idx_s:audln] | |
feats = torch.from_numpy(feats).to(device) | |
feats = feats[None, None, :] | |
if not (device == "cpu"): | |
feats = feats.half() | |
with torch.no_grad(): | |
vec = model.units(feats).squeeze().data.cpu().float().numpy() | |
# print(vec.shape) # [length, dim=256] hop=320 | |
vec_a.extend(vec) | |
np.save(vecPath, vec_a, allow_pickle=False) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-w", "--wav", help="wav", dest="wav", required=True) | |
parser.add_argument("-v", "--vec", help="vec", dest="vec", required=True) | |
args = parser.parse_args() | |
print(args.wav) | |
print(args.vec) | |
wavPath = args.wav | |
vecPath = args.vec | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
_ = check_and_download_model() | |
hubert = load_model("/tmp/hubert-soft-0d54a1f4.pt", device) | |
pred_vec(hubert, wavPath, vecPath, device) | |