Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import os | |
import spaces | |
import torch | |
from datasets import load_dataset | |
from huggingface_hub import CommitScheduler | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
print(f'[INFO] Using device: {device}') | |
# token | |
token = os.environ['TOKEN'] | |
# Load the pretrained model and tokenizer | |
MODEL_NAME = "atlasia/Al-Atlas-0.5B" # "atlasia/Al-Atlas-LLM-mid-training" # "BounharAbdelaziz/Al-Atlas-LLM-0.5B" #"atlasia/Al-Atlas-LLM" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,token=token) # , token=token | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,token=token).to(device) | |
# Fix tokenizer padding | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token # Set pad token | |
# Predefined examples | |
examples = [ | |
["الذكاء الاصطناعي هو فرع من علوم الكمبيوتر اللي كيركز" | |
, 256, 0.7, 0.9, 150, 8, 1.5], | |
["المستقبل ديال الذكاء الصناعي فالمغرب" | |
, 256, 0.7, 0.9, 150, 8, 1.5], | |
[" المطبخ المغربي" | |
, 256, 0.7, 0.9, 150, 8, 1.5], | |
["الماكلة المغربية كتعتبر من أحسن الماكلات فالعالم" | |
, 256, 0.7, 0.9, 150, 8, 1.5], | |
] | |
#inf_dataset=load_dataset("atlasia/atlaset_inference_ds",token=token,split="test",name="llm") | |
detected_commit=False | |
submit_file = Path("user_submit/") / f"data_{uuid.uuid4()}.json" | |
def generate_text(prompt, max_length=256, temperature=0.7, top_p=0.9, top_k=150, num_beams=8, repetition_penalty=1.5): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
output = model.generate( | |
**inputs, | |
max_length=max_length, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
repetition_penalty=repetition_penalty, | |
num_beams=num_beams, | |
top_k= top_k, | |
early_stopping = True, | |
pad_token_id=tokenizer.pad_token_id, # Explicit pad token | |
eos_token_id=tokenizer.eos_token_id, # Explicit eos token | |
) | |
result=tokenizer.decode(output[0], skip_special_tokens=True) | |
#inf_dataset.add_item({"inputs":prompt,"outputs":result,"params":f"{max_length},{temperature},{top_p},{top_k},{num_beams},{repetition_penalty}"}) | |
save_feedback(prompt,result,f"{max_length},{temperature},{top_p},{top_k},{num_beams},{repetition_penalty}") | |
detected_commit=True | |
return result | |
def save_feedback(input,output,params) -> None: | |
with scheduler.lock: | |
with feedback_file.open("a") as f: | |
f.write(json.dumps({"input": input, "output": output, "params": params})) | |
f.write("\n") | |
detected_commit=True | |
if __name__ == "__main__": | |
# Create the Gradio interface | |
with gr.Blocks() as app: | |
gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(label="Prompt: دخل النص بالدارجة"), | |
gr.Slider(8, 4096, value=256, label="Max Length"), | |
gr.Slider(0.0, 2, value=0.7, label="Temperature"), | |
gr.Slider(0.0, 1.0, value=0.9, label="Top-p"), | |
gr.Slider(1, 10000, value=150, label="Top-k"), | |
gr.Slider(1, 20, value=8, label="Number of Beams"), | |
gr.Slider(0.0, 100.0, value=1.5, label="Repetition Penalty"), | |
], | |
outputs=gr.Textbox(label="Generated Text in Moroccan Darija"), | |
title="Moroccan Darija LLM", | |
description="Enter a prompt and get AI-generated text using our pretrained LLM on Moroccan Darija.", | |
examples=examples, | |
) | |
if detected_commit: | |
print("[INFO] CommitScheduler...") | |
scheduler = CommitScheduler( | |
repo_id="atlasia/atlaset_inference_ds", | |
repo_type="dataset", | |
folder_path=submit_file, | |
every=5, | |
token=token | |
) | |
detected_commit=False | |
app.launch() | |