import os import subprocess # Function to install a package if it is not already installed def install(package): subprocess.check_call([os.sys.executable, "-m", "pip", "install", package]) # Ensure the necessary packages are installed install("transformers") install("torch") install("pandas") install("gradio") install("openpyxl") # Added installation for openpyxl import pandas as pd import gradio as gr from transformers import AutoModel, AutoTokenizer import torch # Load the model and tokenizer from Hugging Face tokenizer = AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True) model = AutoModel.from_pretrained("Alibaba-NLP/gte-multilingual-base", trust_remote_code=True) # Load the dataset containing PEC numbers and names def load_dataset(file_path='PEC_Numbers_and_Names.xlsx'): if os.path.exists(file_path): df = pd.read_excel(file_path) print("File loaded successfully.") print(df.head()) # Print first few rows for debugging else: raise FileNotFoundError(f"File not found: {file_path}") return df # Function to get the name based on the PEC number def get_name(pec_number, df): df['PEC No.'] = df['PEC No.'].str.strip().str.upper() pec_number = pec_number.strip().upper() print(f"Searching for PEC Number: {pec_number}") # Debugging output result = df[df['PEC No.'] == pec_number] if not result.empty: print(f"Found Name: {result.iloc[0]['Name']}") # Debugging output return result.iloc[0]['Name'] else: print("PEC Number not is found.") # Debugging output return "PEC Number not is found." # Function to check if the PEC number is attached def check_pec_number(pec_number, df): df['PEC No.'] = df['PEC No.'].str.strip().str.upper() pec_number = pec_number.strip().upper() if pec_number in df['PEC No.'].values: return "Your PEC Number is NOT Attached." else: return "Your PEC Number is Not Attached." # Combine the functions to create a prediction def predict(pec_number): try: # Load the dataset from the root directory df = load_dataset() name = get_name(pec_number, df) pec_status = check_pec_number(pec_number, df) return f"Your Name Is: {name}\n{pec_status}" # Return name and PEC status except Exception as e: print(f"An error occurred: {e}") return f"Error: {e}" # Build the Gradio interface without the file upload option iface = gr.Interface( fn=predict, inputs=gr.Textbox(lines=1, label="**PEC Number**"), # Bold label for PEC Number outputs=gr.Textbox(label="Your Name Is:"), # Custom label for the output title="PEC Number to Name Lookup", description="Enter a PEC number , Your PEC number is attached with Firm or not" ) # Run the Gradio interface if __name__ == "__main__": iface.launch()