|
|
|
from typing import Callable, Dict, List, Optional, Tuple, Union |
|
import fvcore.nn.weight_init as weight_init |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from annotator.oneformer.detectron2.config import configurable |
|
from annotator.oneformer.detectron2.layers import ASPP, Conv2d, DepthwiseSeparableConv2d, ShapeSpec, get_norm |
|
from annotator.oneformer.detectron2.modeling import SEM_SEG_HEADS_REGISTRY |
|
|
|
from .loss import DeepLabCE |
|
|
|
|
|
@SEM_SEG_HEADS_REGISTRY.register() |
|
class DeepLabV3PlusHead(nn.Module): |
|
""" |
|
A semantic segmentation head described in :paper:`DeepLabV3+`. |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
input_shape: Dict[str, ShapeSpec], |
|
*, |
|
project_channels: List[int], |
|
aspp_dilations: List[int], |
|
aspp_dropout: float, |
|
decoder_channels: List[int], |
|
common_stride: int, |
|
norm: Union[str, Callable], |
|
train_size: Optional[Tuple], |
|
loss_weight: float = 1.0, |
|
loss_type: str = "cross_entropy", |
|
ignore_value: int = -1, |
|
num_classes: Optional[int] = None, |
|
use_depthwise_separable_conv: bool = False, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
|
|
Args: |
|
input_shape: shape of the input features. They will be ordered by stride |
|
and the last one (with largest stride) is used as the input to the |
|
decoder (i.e. the ASPP module); the rest are low-level feature for |
|
the intermediate levels of decoder. |
|
project_channels (list[int]): a list of low-level feature channels. |
|
The length should be len(in_features) - 1. |
|
aspp_dilations (list(int)): a list of 3 dilations in ASPP. |
|
aspp_dropout (float): apply dropout on the output of ASPP. |
|
decoder_channels (list[int]): a list of output channels of each |
|
decoder stage. It should have the same length as "in_features" |
|
(each element in "in_features" corresponds to one decoder stage). |
|
common_stride (int): output stride of decoder. |
|
norm (str or callable): normalization for all conv layers. |
|
train_size (tuple): (height, width) of training images. |
|
loss_weight (float): loss weight. |
|
loss_type (str): type of loss function, 2 opptions: |
|
(1) "cross_entropy" is the standard cross entropy loss. |
|
(2) "hard_pixel_mining" is the loss in DeepLab that samples |
|
top k% hardest pixels. |
|
ignore_value (int): category to be ignored during training. |
|
num_classes (int): number of classes, if set to None, the decoder |
|
will not construct a predictor. |
|
use_depthwise_separable_conv (bool): use DepthwiseSeparableConv2d |
|
in ASPP and decoder. |
|
""" |
|
super().__init__() |
|
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride) |
|
|
|
|
|
self.in_features = [k for k, v in input_shape] |
|
in_channels = [x[1].channels for x in input_shape] |
|
in_strides = [x[1].stride for x in input_shape] |
|
aspp_channels = decoder_channels[-1] |
|
self.ignore_value = ignore_value |
|
self.common_stride = common_stride |
|
self.loss_weight = loss_weight |
|
self.loss_type = loss_type |
|
self.decoder_only = num_classes is None |
|
self.use_depthwise_separable_conv = use_depthwise_separable_conv |
|
|
|
|
|
assert ( |
|
len(project_channels) == len(self.in_features) - 1 |
|
), "Expected {} project_channels, got {}".format( |
|
len(self.in_features) - 1, len(project_channels) |
|
) |
|
assert len(decoder_channels) == len( |
|
self.in_features |
|
), "Expected {} decoder_channels, got {}".format( |
|
len(self.in_features), len(decoder_channels) |
|
) |
|
self.decoder = nn.ModuleDict() |
|
|
|
use_bias = norm == "" |
|
for idx, in_channel in enumerate(in_channels): |
|
decoder_stage = nn.ModuleDict() |
|
|
|
if idx == len(self.in_features) - 1: |
|
|
|
if train_size is not None: |
|
train_h, train_w = train_size |
|
encoder_stride = in_strides[-1] |
|
if train_h % encoder_stride or train_w % encoder_stride: |
|
raise ValueError("Crop size need to be divisible by encoder stride.") |
|
pool_h = train_h // encoder_stride |
|
pool_w = train_w // encoder_stride |
|
pool_kernel_size = (pool_h, pool_w) |
|
else: |
|
pool_kernel_size = None |
|
project_conv = ASPP( |
|
in_channel, |
|
aspp_channels, |
|
aspp_dilations, |
|
norm=norm, |
|
activation=F.relu, |
|
pool_kernel_size=pool_kernel_size, |
|
dropout=aspp_dropout, |
|
use_depthwise_separable_conv=use_depthwise_separable_conv, |
|
) |
|
fuse_conv = None |
|
else: |
|
project_conv = Conv2d( |
|
in_channel, |
|
project_channels[idx], |
|
kernel_size=1, |
|
bias=use_bias, |
|
norm=get_norm(norm, project_channels[idx]), |
|
activation=F.relu, |
|
) |
|
weight_init.c2_xavier_fill(project_conv) |
|
if use_depthwise_separable_conv: |
|
|
|
|
|
|
|
fuse_conv = DepthwiseSeparableConv2d( |
|
project_channels[idx] + decoder_channels[idx + 1], |
|
decoder_channels[idx], |
|
kernel_size=5, |
|
padding=2, |
|
norm1=norm, |
|
activation1=F.relu, |
|
norm2=norm, |
|
activation2=F.relu, |
|
) |
|
else: |
|
fuse_conv = nn.Sequential( |
|
Conv2d( |
|
project_channels[idx] + decoder_channels[idx + 1], |
|
decoder_channels[idx], |
|
kernel_size=3, |
|
padding=1, |
|
bias=use_bias, |
|
norm=get_norm(norm, decoder_channels[idx]), |
|
activation=F.relu, |
|
), |
|
Conv2d( |
|
decoder_channels[idx], |
|
decoder_channels[idx], |
|
kernel_size=3, |
|
padding=1, |
|
bias=use_bias, |
|
norm=get_norm(norm, decoder_channels[idx]), |
|
activation=F.relu, |
|
), |
|
) |
|
weight_init.c2_xavier_fill(fuse_conv[0]) |
|
weight_init.c2_xavier_fill(fuse_conv[1]) |
|
|
|
decoder_stage["project_conv"] = project_conv |
|
decoder_stage["fuse_conv"] = fuse_conv |
|
|
|
self.decoder[self.in_features[idx]] = decoder_stage |
|
|
|
if not self.decoder_only: |
|
self.predictor = Conv2d( |
|
decoder_channels[0], num_classes, kernel_size=1, stride=1, padding=0 |
|
) |
|
nn.init.normal_(self.predictor.weight, 0, 0.001) |
|
nn.init.constant_(self.predictor.bias, 0) |
|
|
|
if self.loss_type == "cross_entropy": |
|
self.loss = nn.CrossEntropyLoss(reduction="mean", ignore_index=self.ignore_value) |
|
elif self.loss_type == "hard_pixel_mining": |
|
self.loss = DeepLabCE(ignore_label=self.ignore_value, top_k_percent_pixels=0.2) |
|
else: |
|
raise ValueError("Unexpected loss type: %s" % self.loss_type) |
|
|
|
@classmethod |
|
def from_config(cls, cfg, input_shape): |
|
if cfg.INPUT.CROP.ENABLED: |
|
assert cfg.INPUT.CROP.TYPE == "absolute" |
|
train_size = cfg.INPUT.CROP.SIZE |
|
else: |
|
train_size = None |
|
decoder_channels = [cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM] * ( |
|
len(cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES) - 1 |
|
) + [cfg.MODEL.SEM_SEG_HEAD.ASPP_CHANNELS] |
|
ret = dict( |
|
input_shape={ |
|
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES |
|
}, |
|
project_channels=cfg.MODEL.SEM_SEG_HEAD.PROJECT_CHANNELS, |
|
aspp_dilations=cfg.MODEL.SEM_SEG_HEAD.ASPP_DILATIONS, |
|
aspp_dropout=cfg.MODEL.SEM_SEG_HEAD.ASPP_DROPOUT, |
|
decoder_channels=decoder_channels, |
|
common_stride=cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE, |
|
norm=cfg.MODEL.SEM_SEG_HEAD.NORM, |
|
train_size=train_size, |
|
loss_weight=cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT, |
|
loss_type=cfg.MODEL.SEM_SEG_HEAD.LOSS_TYPE, |
|
ignore_value=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE, |
|
num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES, |
|
use_depthwise_separable_conv=cfg.MODEL.SEM_SEG_HEAD.USE_DEPTHWISE_SEPARABLE_CONV, |
|
) |
|
return ret |
|
|
|
def forward(self, features, targets=None): |
|
""" |
|
Returns: |
|
In training, returns (None, dict of losses) |
|
In inference, returns (CxHxW logits, {}) |
|
""" |
|
y = self.layers(features) |
|
if self.decoder_only: |
|
|
|
return y |
|
if self.training: |
|
return None, self.losses(y, targets) |
|
else: |
|
y = F.interpolate( |
|
y, scale_factor=self.common_stride, mode="bilinear", align_corners=False |
|
) |
|
return y, {} |
|
|
|
def layers(self, features): |
|
|
|
for f in self.in_features[::-1]: |
|
x = features[f] |
|
proj_x = self.decoder[f]["project_conv"](x) |
|
if self.decoder[f]["fuse_conv"] is None: |
|
|
|
y = proj_x |
|
else: |
|
|
|
y = F.interpolate(y, size=proj_x.size()[2:], mode="bilinear", align_corners=False) |
|
y = torch.cat([proj_x, y], dim=1) |
|
y = self.decoder[f]["fuse_conv"](y) |
|
if not self.decoder_only: |
|
y = self.predictor(y) |
|
return y |
|
|
|
def losses(self, predictions, targets): |
|
predictions = F.interpolate( |
|
predictions, scale_factor=self.common_stride, mode="bilinear", align_corners=False |
|
) |
|
loss = self.loss(predictions, targets) |
|
losses = {"loss_sem_seg": loss * self.loss_weight} |
|
return losses |
|
|
|
|
|
@SEM_SEG_HEADS_REGISTRY.register() |
|
class DeepLabV3Head(nn.Module): |
|
""" |
|
A semantic segmentation head described in :paper:`DeepLabV3`. |
|
""" |
|
|
|
def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]): |
|
super().__init__() |
|
|
|
|
|
self.in_features = cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES |
|
in_channels = [input_shape[f].channels for f in self.in_features] |
|
aspp_channels = cfg.MODEL.SEM_SEG_HEAD.ASPP_CHANNELS |
|
aspp_dilations = cfg.MODEL.SEM_SEG_HEAD.ASPP_DILATIONS |
|
self.ignore_value = cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE |
|
num_classes = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES |
|
conv_dims = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM |
|
self.common_stride = cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE |
|
norm = cfg.MODEL.SEM_SEG_HEAD.NORM |
|
self.loss_weight = cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT |
|
self.loss_type = cfg.MODEL.SEM_SEG_HEAD.LOSS_TYPE |
|
train_crop_size = cfg.INPUT.CROP.SIZE |
|
aspp_dropout = cfg.MODEL.SEM_SEG_HEAD.ASPP_DROPOUT |
|
use_depthwise_separable_conv = cfg.MODEL.SEM_SEG_HEAD.USE_DEPTHWISE_SEPARABLE_CONV |
|
|
|
|
|
assert len(self.in_features) == 1 |
|
assert len(in_channels) == 1 |
|
|
|
|
|
if cfg.INPUT.CROP.ENABLED: |
|
assert cfg.INPUT.CROP.TYPE == "absolute" |
|
train_crop_h, train_crop_w = train_crop_size |
|
if train_crop_h % self.common_stride or train_crop_w % self.common_stride: |
|
raise ValueError("Crop size need to be divisible by output stride.") |
|
pool_h = train_crop_h // self.common_stride |
|
pool_w = train_crop_w // self.common_stride |
|
pool_kernel_size = (pool_h, pool_w) |
|
else: |
|
pool_kernel_size = None |
|
self.aspp = ASPP( |
|
in_channels[0], |
|
aspp_channels, |
|
aspp_dilations, |
|
norm=norm, |
|
activation=F.relu, |
|
pool_kernel_size=pool_kernel_size, |
|
dropout=aspp_dropout, |
|
use_depthwise_separable_conv=use_depthwise_separable_conv, |
|
) |
|
|
|
self.predictor = Conv2d(conv_dims, num_classes, kernel_size=1, stride=1, padding=0) |
|
nn.init.normal_(self.predictor.weight, 0, 0.001) |
|
nn.init.constant_(self.predictor.bias, 0) |
|
|
|
if self.loss_type == "cross_entropy": |
|
self.loss = nn.CrossEntropyLoss(reduction="mean", ignore_index=self.ignore_value) |
|
elif self.loss_type == "hard_pixel_mining": |
|
self.loss = DeepLabCE(ignore_label=self.ignore_value, top_k_percent_pixels=0.2) |
|
else: |
|
raise ValueError("Unexpected loss type: %s" % self.loss_type) |
|
|
|
def forward(self, features, targets=None): |
|
""" |
|
Returns: |
|
In training, returns (None, dict of losses) |
|
In inference, returns (CxHxW logits, {}) |
|
""" |
|
x = features[self.in_features[0]] |
|
x = self.aspp(x) |
|
x = self.predictor(x) |
|
if self.training: |
|
return None, self.losses(x, targets) |
|
else: |
|
x = F.interpolate( |
|
x, scale_factor=self.common_stride, mode="bilinear", align_corners=False |
|
) |
|
return x, {} |
|
|
|
def losses(self, predictions, targets): |
|
predictions = F.interpolate( |
|
predictions, scale_factor=self.common_stride, mode="bilinear", align_corners=False |
|
) |
|
loss = self.loss(predictions, targets) |
|
losses = {"loss_sem_seg": loss * self.loss_weight} |
|
return losses |
|
|