|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import cv2 |
|
import torch |
|
import numpy as np |
|
|
|
from einops import rearrange |
|
from annotator.util import annotator_ckpts_path, safe_step |
|
|
|
|
|
class DoubleConvBlock(torch.nn.Module): |
|
def __init__(self, input_channel, output_channel, layer_number): |
|
super().__init__() |
|
self.convs = torch.nn.Sequential() |
|
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) |
|
for i in range(1, layer_number): |
|
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) |
|
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) |
|
|
|
def __call__(self, x, down_sampling=False): |
|
h = x |
|
if down_sampling: |
|
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) |
|
for conv in self.convs: |
|
h = conv(h) |
|
h = torch.nn.functional.relu(h) |
|
return h, self.projection(h) |
|
|
|
|
|
class ControlNetHED_Apache2(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) |
|
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) |
|
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) |
|
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) |
|
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) |
|
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) |
|
|
|
def __call__(self, x): |
|
h = x - self.norm |
|
h, projection1 = self.block1(h) |
|
h, projection2 = self.block2(h, down_sampling=True) |
|
h, projection3 = self.block3(h, down_sampling=True) |
|
h, projection4 = self.block4(h, down_sampling=True) |
|
h, projection5 = self.block5(h, down_sampling=True) |
|
return projection1, projection2, projection3, projection4, projection5 |
|
|
|
|
|
class HEDdetector: |
|
def __init__(self): |
|
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth" |
|
modelpath = os.path.join(annotator_ckpts_path, "ControlNetHED.pth") |
|
if not os.path.exists(modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) |
|
|
|
self.netNetwork = ControlNetHED_Apache2().float().cpu().eval() |
|
self.netNetwork.load_state_dict(torch.load(modelpath, map_location=torch.device('cpu'))) |
|
|
|
def __call__(self, input_image, safe=False): |
|
assert input_image.ndim == 3 |
|
H, W, C = input_image.shape |
|
with torch.no_grad(): |
|
|
|
image_hed = torch.from_numpy(input_image.copy()).float().cpu() |
|
image_hed = rearrange(image_hed, 'h w c -> 1 c h w') |
|
edges = self.netNetwork(image_hed) |
|
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges] |
|
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges] |
|
edges = np.stack(edges, axis=2) |
|
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64))) |
|
if safe: |
|
edge = safe_step(edge) |
|
edge = (edge * 255.0).clip(0, 255).astype(np.uint8) |
|
return edge |
|
|