|
import random |
|
import torch |
|
|
|
|
|
class ImagePool(): |
|
"""This class implements an image buffer that stores previously generated images. |
|
|
|
This buffer enables us to update discriminators using a history of generated images |
|
rather than the ones produced by the latest generators. |
|
""" |
|
|
|
def __init__(self, pool_size): |
|
"""Initialize the ImagePool class |
|
|
|
Parameters: |
|
pool_size (int) -- the size of image buffer, if pool_size=0, no buffer will be created |
|
""" |
|
self.pool_size = pool_size |
|
if self.pool_size > 0: |
|
self.num_imgs = 0 |
|
self.images = [] |
|
|
|
def query(self, images): |
|
"""Return an image from the pool. |
|
|
|
Parameters: |
|
images: the latest generated images from the generator |
|
|
|
Returns images from the buffer. |
|
|
|
By 50/100, the buffer will return input images. |
|
By 50/100, the buffer will return images previously stored in the buffer, |
|
and insert the current images to the buffer. |
|
""" |
|
if self.pool_size == 0: |
|
return images |
|
return_images = [] |
|
for image in images: |
|
image = torch.unsqueeze(image.data, 0) |
|
if self.num_imgs < self.pool_size: |
|
self.num_imgs = self.num_imgs + 1 |
|
self.images.append(image) |
|
return_images.append(image) |
|
else: |
|
p = random.uniform(0, 1) |
|
if p > 0.5: |
|
random_id = random.randint(0, self.pool_size - 1) |
|
tmp = self.images[random_id].clone() |
|
self.images[random_id] = image |
|
return_images.append(tmp) |
|
else: |
|
return_images.append(image) |
|
return_images = torch.cat(return_images, 0) |
|
return return_images |
|
|