import spaces import PIL.Image as Image import gradio as gr from ultralytics import ASSETS, YOLO model = YOLO("best.pt") @spaces.GPU def predict_image(img, conf_threshold, iou_threshold): results = model.predict( source=img, device="cuda:0", conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=416, max_det=1 ) for r in results: im_array = r.plot() im = Image.fromarray(im_array[..., ::-1]) return im asl = gr.Interface( fn=predict_image, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold") ], outputs=gr.Image(type="pil", label="Result"), title="ASL Detector YOLOv9e", description="Upload images for inference. The Ultralytics YOLOv9e model is used by default. Letter Z is not supported.", examples=[ [ASSETS / "a.jpg", 0.25, 0.45], [ASSETS / "b.jpg", 0.25, 0.45], ] ) if __name__ == '__main__': asl.launch()