auto-notebook-creator / utils /notebook_utils.py
asoria's picture
asoria HF staff
Adding contribute tutorial
fb1a11c
raw
history blame
13 kB
import os
import json
def replace_wildcards(
templates, wildcards, replacements, has_numeric_columns, has_categoric_columns
):
if len(wildcards) != len(replacements):
raise ValueError(
"The number of wildcards must match the number of replacements."
)
new_templates = []
for tmp in templates:
if "type" in tmp and tmp["type"] == "numeric" and not has_numeric_columns:
continue
if "type" in tmp and tmp["type"] == "categoric" and not has_categoric_columns:
continue
tmp_text = tmp["source"].strip()
for wildcard, replacement in zip(wildcards, replacements):
tmp_text = tmp_text.replace(wildcard, replacement)
new_templates.append({"cell_type": tmp["cell_type"], "source": tmp_text})
return new_templates
embeddings_cells = [
{
"cell_type": "markdown",
"source": """
---
# **Embeddings Notebook for {dataset_name} dataset**
---
""",
},
{
"cell_type": "markdown",
"source": "## 1. Setup necessary libraries and load the dataset",
},
{
"cell_type": "code",
"source": """
# Install and import necessary libraries.
!pip install pandas sentence-transformers faiss-cpu
""",
},
{
"cell_type": "code",
"source": """
import pandas as pd
from sentence_transformers import SentenceTransformer
import faiss
""",
},
{
"cell_type": "code",
"source": """
# Load the dataset as a DataFrame
{first_code}
""",
},
{
"cell_type": "code",
"source": """
# Specify the column name that contains the text data to generate embeddings
column_to_generate_embeddings = '{longest_col}'
""",
},
{
"cell_type": "markdown",
"source": "## 2. Loading embedding model and creating FAISS index",
},
{
"cell_type": "code",
"source": """
# Remove duplicate entries based on the specified column
df = df.drop_duplicates(subset=column_to_generate_embeddings)
""",
},
{
"cell_type": "code",
"source": """
# Convert the column data to a list of text entries
text_list = df[column_to_generate_embeddings].tolist()
""",
},
{
"cell_type": "code",
"source": """
# Specify the embedding model you want to use
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
""",
},
{
"cell_type": "code",
"source": """
vectors = model.encode(text_list)
vector_dimension = vectors.shape[1]
# Initialize the FAISS index with the appropriate dimension (384 for this model)
index = faiss.IndexFlatL2(vector_dimension)
# Encode the text list into embeddings and add them to the FAISS index
index.add(vectors)
""",
},
{
"cell_type": "markdown",
"source": "## 3. Perform a text search",
},
{
"cell_type": "code",
"source": """
# Specify the text you want to search for in the list
text_to_search = text_list[0]
print(f"Text to search: {text_to_search}")
""",
},
{
"cell_type": "code",
"source": """
# Generate the embedding for the search query
query_embedding = model.encode([text_to_search])
""",
},
{
"cell_type": "code",
"source": """
# Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)
D, I = index.search(query_embedding, k=10)
# Print the similar documents found
print(f"Similar documents: {[text_list[i] for i in I[0]]}")
""",
},
]
eda_cells = [
{
"cell_type": "markdown",
"source": """
---
# **Exploratory Data Analysis (EDA) Notebook for {dataset_name} dataset**
---
""",
},
{
"cell_type": "markdown",
"source": "## 1. Setup necessary libraries and load the dataset",
},
{
"cell_type": "code",
"source": """
# Install and import necessary libraries.
!pip install pandas matplotlib seaborn
""",
},
{
"cell_type": "code",
"source": """
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
""",
},
{
"cell_type": "code",
"source": """
# Load the dataset as a DataFrame
{first_code}
""",
},
{
"cell_type": "markdown",
"source": "## 2. Understanding the Dataset",
},
{
"cell_type": "code",
"source": """
# First rows of the dataset and info
print(df.head())
print(df.info())
""",
},
{
"cell_type": "code",
"source": """
# Check for missing values
print(df.isnull().sum())
""",
},
{
"cell_type": "code",
"source": """
# Identify data types of each column
print(df.dtypes)
""",
},
{
"cell_type": "code",
"source": """
# Detect duplicated rows
print(df.duplicated().sum())
""",
},
{
"cell_type": "code",
"source": """
# Generate descriptive statistics
print(df.describe())
""",
},
{
"type": "categoric",
"cell_type": "code",
"source": """
# Unique values in categorical columns
df.select_dtypes(include=['object']).nunique()
""",
},
{
"cell_type": "markdown",
"source": "## 3. Data Visualization",
},
{
"type": "numeric",
"cell_type": "code",
"source": """
# Correlation matrix for numerical columns
corr_matrix = df.corr(numeric_only=True)
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, fmt='.2f', cmap='coolwarm', square=True)
plt.title('Correlation Matrix')
plt.show()
""",
},
{
"type": "numeric",
"cell_type": "code",
"source": """
# Distribution plots for numerical columns
for column in df.select_dtypes(include=['int64', 'float64']).columns:
plt.figure(figsize=(8, 4))
sns.histplot(df[column], kde=True)
plt.title(f'Distribution of {column}')
plt.xlabel(column)
plt.ylabel('Frequency')
plt.show()
""",
},
{
"type": "categoric",
"cell_type": "code",
"source": """
# Count plots for categorical columns
for column in df.select_dtypes(include=['object']).columns:
plt.figure(figsize=(8, 4))
sns.countplot(x=column, data=df)
plt.title(f'Count Plot of {column}')
plt.xlabel(column)
plt.ylabel('Count')
plt.show()
""",
},
{
"type": "numeric",
"cell_type": "code",
"source": """
# Box plots for detecting outliers in numerical columns
for column in df.select_dtypes(include=['int64', 'float64']).columns:
plt.figure(figsize=(8, 4))
sns.boxplot(df[column])
plt.title(f'Box Plot of {column}')
plt.xlabel(column)
plt.show()
""",
},
]
rag_cells = [
{
"cell_type": "markdown",
"source": """
---
# **Retrieval-Augmented Generation Notebook for {dataset_name} dataset**
---
""",
},
{
"cell_type": "markdown",
"source": "## 1. Setup necessary libraries and load the dataset",
},
{
"cell_type": "code",
"source": """
# Install and import necessary libraries.
!pip install pandas sentence-transformers faiss-cpu transformers torch huggingface_hub
""",
},
{
"cell_type": "code",
"source": """
from sentence_transformers import SentenceTransformer
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import InferenceClient
import pandas as pd
import faiss
import torch
""",
},
{
"cell_type": "code",
"source": """
# Load the dataset as a DataFrame
{first_code}
""",
},
{
"cell_type": "code",
"source": """
# Specify the column name that contains the text data to generate embeddings
column_to_generate_embeddings = '{longest_col}'
""",
},
{
"cell_type": "markdown",
"source": "## 2. Loading embedding model and creating FAISS index",
},
{
"cell_type": "code",
"source": """
# Remove duplicate entries based on the specified column
df = df.drop_duplicates(subset=column_to_generate_embeddings)
""",
},
{
"cell_type": "code",
"source": """
# Convert the column data to a list of text entries
text_list = df[column_to_generate_embeddings].tolist()
""",
},
{
"cell_type": "code",
"source": """
# Specify the embedding model you want to use
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
""",
},
{
"cell_type": "code",
"source": """
vectors = model.encode(text_list)
vector_dimension = vectors.shape[1]
# Initialize the FAISS index with the appropriate dimension (384 for this model)
index = faiss.IndexFlatL2(vector_dimension)
# Encode the text list into embeddings and add them to the FAISS index
index.add(vectors)
""",
},
{
"cell_type": "markdown",
"source": "## 3. Perform a text search",
},
{
"cell_type": "code",
"source": """
# Specify the text you want to search for in the list
query = "How to cook sushi?"
# Generate the embedding for the search query
query_embedding = model.encode([query])
""",
},
{
"cell_type": "code",
"source": """
# Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)
D, I = index.search(query_embedding, k=10)
# Print the similar documents found
print(f"Similar documents: {[text_list[i] for i in I[0]]}")
""",
},
{
"cell_type": "markdown",
"source": "## 4. Load pipeline and perform inference locally",
},
{
"cell_type": "code",
"source": """
# Adjust model name as needed
checkpoint = 'HuggingFaceTB/SmolLM-1.7B-Instruct'
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if device == "cuda" else -1)
""",
},
{
"cell_type": "code",
"source": """
# Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query
selected_elements = [text_list[i] for i in I[0].tolist()]
context = ','.join(selected_elements)
messages = [
{
"role": "system",
"content": f"You are an intelligent assistant tasked with providing accurate and concise answers based on the following context. Use the information retrieved to construct your response. Context: {context}",
},
{"role": "user", "content": query},
]
""",
},
{
"cell_type": "code",
"source": """
# Send the prompt to the pipeline and show the answer
output = generator(messages)
print("Generated result:")
print(output[0]['generated_text'][-1]['content']) # Print the assistant's response content
""",
},
{
"cell_type": "markdown",
"source": "## 5. Alternatively call the inference client",
},
{
"cell_type": "code",
"source": """
# Adjust model name as needed
checkpoint = "meta-llama/Meta-Llama-3-8B-Instruct"
# Change here your Hugging Face API token
token = "hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
inference_client = InferenceClient(checkpoint, token=token)
output = inference_client.chat_completion(messages=messages, stream=False)
print("Generated result:")
print(output.choices[0].message.content)
""",
},
]
def generate_rag_system_prompt():
"""
1. Install necessary libraries.
2. Import libraries.
3. Load the dataset as a DataFrame using the provided code.
4. Select the column for generating embeddings.
5. Remove duplicate data.
6. Convert the selected column to a list.
7. Load the sentence-transformers model.
8. Create a FAISS index.
9. Encode a query sample.
10. Search for similar documents using the FAISS index.
11. Load the 'HuggingFaceH4/zephyr-7b-beta' model from the transformers library and create a pipeline.
12. Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query.
13. Send the prompt to the pipeline and display the answer.
Ensure the notebook is well-organized with explanations for each step.
The output should be Markdown content with Python code snippets enclosed in "```python" and "```".
The user will provide the dataset information in the following format:
## Columns and Data Types
## Sample Data
## Loading Data code
Use the provided code to load the dataset; do not use any other method.
"""
def load_json_files_from_folder(folder_path):
components = {}
for filename in os.listdir(folder_path):
if filename.endswith(".json"):
file_path = os.path.join(folder_path, filename)
with open(file_path, "r") as json_file:
data = json.load(json_file)
components[data["notebook_title"]] = data
return components