Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import ( | |
| AutoModelForSeq2SeqLM, | |
| AutoTokenizer, | |
| AutoConfig, | |
| pipeline, | |
| ) | |
| model_name = "ashwinR/CodeExplainer" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, padding=True) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| config = AutoConfig.from_pretrained(model_name) | |
| model.eval() | |
| pipe = pipeline("summarization", model=model_name, config=config, tokenizer=tokenizer) | |
| def generate_text(text_prompt): | |
| response = pipe(text_prompt) | |
| return response[0]['summary_text'] | |
| textbox1 = gr.Textbox(value = """ | |
| class Solution(object): | |
| def isValid(self, s): | |
| stack = [] | |
| mapping = {")": "(", "}": "{", "]": "["} | |
| for char in s: | |
| if char in mapping: | |
| top_element = stack.pop() if stack else '#' | |
| if mapping[char] != top_element: | |
| return False | |
| else: | |
| stack.append(char) | |
| return not stack""") | |
| textbox2 = gr.Textbox() | |
| if __name__ == "__main__": | |
| gr.Textbox("The Inference Takes about 1 min 30 seconds") | |
| with gr.Blocks() as demo: | |
| gr.Interface(fn = generate_text, inputs = textbox1, outputs = textbox2) | |
| with gr.Row(): | |
| gr.Image(value = "output.jpg", label = "Sample Code for Checking if a Binary Tree is Mirrored") | |
| gr.Image(value = "code.jpg", label = "Sample Output Explaination in Natural language") | |
| demo.launch() |