tripo-custom / utils.py
ashh757's picture
Upload 21 files
2e968f0 verified
import logging
import os
import time
import numpy as np
from PIL import Image, ImageOps
import numpy as np
import torch
import xatlas
from PIL import Image
from tsr.system import TSR
from tsr.utils import save_video
from tsr.bake_texture import bake_texture
class Timer:
def __init__(self):
self.items = {}
self.time_scale = 1000.0 # ms
self.time_unit = "ms"
def start(self, name: str) -> None:
if torch.cuda.is_available():
torch.cuda.synchronize()
self.items[name] = time.time()
logging.info(f"{name} ...")
def end(self, name: str) -> float:
if name not in self.items:
return
if torch.cuda.is_available():
torch.cuda.synchronize()
start_time = self.items.pop(name)
delta = time.time() - start_time
t = delta * self.time_scale
logging.info(f"{name} finished in {t:.2f}{self.time_unit}.")
def initialize_model(pretrained_model_name_or_path="stabilityai/TripoSR",
chunk_size=8192,
device="cuda:0" if torch.cuda.is_available() else "cpu"):
timer.start("Initializing model")
model = TSR.from_pretrained(
pretrained_model_name_or_path,
config_name="config.yaml",
weight_name="model.ckpt",
)
model.renderer.set_chunk_size(chunk_size)
model.to(device)
timer.end("Initializing model")
return model
def remove_background(image_path, output_path, background_value=127, new_size=(425, 425)):
# Open the image
image = Image.open(image_path).convert("RGBA")
# Split the image into its respective channels
r, g, b, alpha = image.split()
# Convert the alpha channel to binary mask where transparency is 0 and opaque is 255
alpha = ImageOps.invert(alpha)
# Replace the transparent areas with the specified background value
background = Image.new("L", image.size, color=background_value)
image_rgb = Image.composite(background, r, alpha), Image.composite(background, g, alpha), Image.composite(background, b, alpha)
# Merge the channels back into an image
image = Image.merge("RGB", image_rgb)
# Resize the image to the desired size
image = image.resize(new_size, Image.LANCZOS)
# Save the processed image
# image.save(output_path)
return image
def process_image(image_path, output_dir, no_remove_bg, foreground_ratio):
timer.start("Processing image")
if no_remove_bg:
rembg_session = None
image = np.array(Image.open(image_path).convert("RGB"))
else:
image = remove_background(image_path ,output_dir)
# Save the processed image
os.makedirs(output_dir, exist_ok=True)
image.save(os.path.join(output_dir, "processed_input.png"))
timer.end("Processing image")
return image
def run_model(model, image, output_dir, device, render, mc_resolution, model_save_format, bake_texture_flag, texture_resolution):
logging.info("Running model...")
timer.start("Running model")
with torch.no_grad():
scene_codes = model([image], device=device)
timer.end("Running model")
out_video_path = None
if render:
timer.start("Rendering")
render_images = model.render(scene_codes, n_views=30, return_type="pil")
for ri, render_image in enumerate(render_images[0]):
render_image.save(os.path.join(output_dir, f"render_{ri:03d}.png"))
out_video_path = os.path.join(output_dir, "render.mp4")
save_video(
render_images[0], out_video_path, fps=30
)
timer.end("Rendering")
timer.start("Extracting mesh")
meshes = model.extract_mesh(scene_codes, not bake_texture_flag, resolution=mc_resolution)
timer.end("Extracting mesh")
out_mesh_path = os.path.join(output_dir, f"mesh.{model_save_format}")
if bake_texture_flag:
out_texture_path = os.path.join(output_dir, "texture.png")
timer.start("Baking texture")
bake_output = bake_texture(meshes[0], model, scene_codes[0], texture_resolution)
timer.end("Baking texture")
timer.start("Exporting mesh and texture")
xatlas.export(out_mesh_path, meshes[0].vertices[bake_output["vmapping"]], bake_output["indices"], bake_output["uvs"], meshes[0].vertex_normals[bake_output["vmapping"]])
Image.fromarray((bake_output["colors"] * 255.0).astype(np.uint8)).transpose(Image.FLIP_TOP_BOTTOM).save(out_texture_path)
timer.end("Exporting mesh and texture")
else:
timer.start("Exporting mesh")
meshes[0].export(out_mesh_path)
timer.end("Exporting mesh")
return out_mesh_path ,out_video_path
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO)
timer = Timer()