Spaces:
Sleeping
Sleeping
import logging | |
import os | |
import time | |
import numpy as np | |
from PIL import Image, ImageOps | |
import numpy as np | |
import torch | |
import xatlas | |
from PIL import Image | |
from tsr.system import TSR | |
from tsr.utils import save_video | |
from tsr.bake_texture import bake_texture | |
class Timer: | |
def __init__(self): | |
self.items = {} | |
self.time_scale = 1000.0 # ms | |
self.time_unit = "ms" | |
def start(self, name: str) -> None: | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
self.items[name] = time.time() | |
logging.info(f"{name} ...") | |
def end(self, name: str) -> float: | |
if name not in self.items: | |
return | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
start_time = self.items.pop(name) | |
delta = time.time() - start_time | |
t = delta * self.time_scale | |
logging.info(f"{name} finished in {t:.2f}{self.time_unit}.") | |
def initialize_model(pretrained_model_name_or_path="stabilityai/TripoSR", | |
chunk_size=8192, | |
device="cuda:0" if torch.cuda.is_available() else "cpu"): | |
timer.start("Initializing model") | |
model = TSR.from_pretrained( | |
pretrained_model_name_or_path, | |
config_name="config.yaml", | |
weight_name="model.ckpt", | |
) | |
model.renderer.set_chunk_size(chunk_size) | |
model.to(device) | |
timer.end("Initializing model") | |
return model | |
def remove_background(image_path, output_path, background_value=127, new_size=(425, 425)): | |
# Open the image | |
image = Image.open(image_path).convert("RGBA") | |
# Split the image into its respective channels | |
r, g, b, alpha = image.split() | |
# Convert the alpha channel to binary mask where transparency is 0 and opaque is 255 | |
alpha = ImageOps.invert(alpha) | |
# Replace the transparent areas with the specified background value | |
background = Image.new("L", image.size, color=background_value) | |
image_rgb = Image.composite(background, r, alpha), Image.composite(background, g, alpha), Image.composite(background, b, alpha) | |
# Merge the channels back into an image | |
image = Image.merge("RGB", image_rgb) | |
# Resize the image to the desired size | |
image = image.resize(new_size, Image.LANCZOS) | |
# Save the processed image | |
# image.save(output_path) | |
return image | |
def process_image(image_path, output_dir, no_remove_bg, foreground_ratio): | |
timer.start("Processing image") | |
if no_remove_bg: | |
rembg_session = None | |
image = np.array(Image.open(image_path).convert("RGB")) | |
else: | |
image = remove_background(image_path ,output_dir) | |
# Save the processed image | |
os.makedirs(output_dir, exist_ok=True) | |
image.save(os.path.join(output_dir, "processed_input.png")) | |
timer.end("Processing image") | |
return image | |
def run_model(model, image, output_dir, device, render, mc_resolution, model_save_format, bake_texture_flag, texture_resolution): | |
logging.info("Running model...") | |
timer.start("Running model") | |
with torch.no_grad(): | |
scene_codes = model([image], device=device) | |
timer.end("Running model") | |
out_video_path = None | |
if render: | |
timer.start("Rendering") | |
render_images = model.render(scene_codes, n_views=30, return_type="pil") | |
for ri, render_image in enumerate(render_images[0]): | |
render_image.save(os.path.join(output_dir, f"render_{ri:03d}.png")) | |
out_video_path = os.path.join(output_dir, "render.mp4") | |
save_video( | |
render_images[0], out_video_path, fps=30 | |
) | |
timer.end("Rendering") | |
timer.start("Extracting mesh") | |
meshes = model.extract_mesh(scene_codes, not bake_texture_flag, resolution=mc_resolution) | |
timer.end("Extracting mesh") | |
out_mesh_path = os.path.join(output_dir, f"mesh.{model_save_format}") | |
if bake_texture_flag: | |
out_texture_path = os.path.join(output_dir, "texture.png") | |
timer.start("Baking texture") | |
bake_output = bake_texture(meshes[0], model, scene_codes[0], texture_resolution) | |
timer.end("Baking texture") | |
timer.start("Exporting mesh and texture") | |
xatlas.export(out_mesh_path, meshes[0].vertices[bake_output["vmapping"]], bake_output["indices"], bake_output["uvs"], meshes[0].vertex_normals[bake_output["vmapping"]]) | |
Image.fromarray((bake_output["colors"] * 255.0).astype(np.uint8)).transpose(Image.FLIP_TOP_BOTTOM).save(out_texture_path) | |
timer.end("Exporting mesh and texture") | |
else: | |
timer.start("Exporting mesh") | |
meshes[0].export(out_mesh_path) | |
timer.end("Exporting mesh") | |
return out_mesh_path ,out_video_path | |
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO) | |
timer = Timer() | |