""" VGG( (features): Sequential( (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU(inplace=True) (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (3): ReLU(inplace=True) (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (6): ReLU(inplace=True) (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (8): ReLU(inplace=True) (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (11): ReLU(inplace=True) (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (13): ReLU(inplace=True) (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (15): ReLU(inplace=True) (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (18): ReLU(inplace=True) (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (20): ReLU(inplace=True) (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (22): ReLU(inplace=True) (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (25): ReLU(inplace=True) (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (27): ReLU(inplace=True) (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (29): ReLU(inplace=True) (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (avgpool): AdaptiveAvgPool2d(output_size=(7, 7)) (classifier): Sequential( (0): Linear(in_features=25088, out_features=4096, bias=True) (1): ReLU(inplace=True) (2): Dropout(p=0.5, inplace=False) (3): Linear(in_features=4096, out_features=4096, bias=True) (4): ReLU(inplace=True) (5): Dropout(p=0.5, inplace=False) (6): Linear(in_features=4096, out_features=1000, bias=True) ) ) """ import itertools import json from typing import Any, List, NamedTuple, Optional, Tuple, Union, Callable import glob import importlib import inspect import time import zipfile from diffusers.utils import deprecate from diffusers.configuration_utils import FrozenDict import argparse import math import os import random import re import diffusers import numpy as np import torch import torchvision from diffusers import ( AutoencoderKL, DDPMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, LMSDiscreteScheduler, PNDMScheduler, DDIMScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, KDPM2DiscreteScheduler, KDPM2AncestralDiscreteScheduler, # UNet2DConditionModel, StableDiffusionPipeline, ) from einops import rearrange from tqdm import tqdm from torchvision import transforms from transformers import CLIPTextModel, CLIPTokenizer, CLIPModel, CLIPTextConfig import PIL from PIL import Image from PIL.PngImagePlugin import PngInfo import library.model_util as model_util import library.train_util as train_util from networks.lora import LoRANetwork import tools.original_control_net as original_control_net from tools.original_control_net import ControlNetInfo from library.original_unet import UNet2DConditionModel from library.original_unet import FlashAttentionFunction from XTI_hijack import unet_forward_XTI, downblock_forward_XTI, upblock_forward_XTI # scheduler: SCHEDULER_LINEAR_START = 0.00085 SCHEDULER_LINEAR_END = 0.0120 SCHEDULER_TIMESTEPS = 1000 SCHEDLER_SCHEDULE = "scaled_linear" # その他の設定 LATENT_CHANNELS = 4 DOWNSAMPLING_FACTOR = 8 # CLIP_ID_L14_336 = "openai/clip-vit-large-patch14-336" # CLIP guided SD関連 CLIP_MODEL_PATH = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K" FEATURE_EXTRACTOR_SIZE = (224, 224) FEATURE_EXTRACTOR_IMAGE_MEAN = [0.48145466, 0.4578275, 0.40821073] FEATURE_EXTRACTOR_IMAGE_STD = [0.26862954, 0.26130258, 0.27577711] VGG16_IMAGE_MEAN = [0.485, 0.456, 0.406] VGG16_IMAGE_STD = [0.229, 0.224, 0.225] VGG16_INPUT_RESIZE_DIV = 4 # CLIP特徴量の取得時にcutoutを使うか:使う場合にはソースを書き換えてください NUM_CUTOUTS = 4 USE_CUTOUTS = False # region モジュール入れ替え部 """ 高速化のためのモジュール入れ替え """ def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers, sdpa): if mem_eff_attn: print("Enable memory efficient attention for U-Net") # これはDiffusersのU-Netではなく自前のU-Netなので置き換えなくても良い unet.set_use_memory_efficient_attention(False, True) elif xformers: print("Enable xformers for U-Net") try: import xformers.ops except ImportError: raise ImportError("No xformers / xformersがインストールされていないようです") unet.set_use_memory_efficient_attention(True, False) elif sdpa: print("Enable SDPA for U-Net") unet.set_use_memory_efficient_attention(False, False) unet.set_use_sdpa(True) # TODO common train_util.py def replace_vae_modules(vae: diffusers.models.AutoencoderKL, mem_eff_attn, xformers, sdpa): if mem_eff_attn: replace_vae_attn_to_memory_efficient() elif xformers: replace_vae_attn_to_xformers() elif sdpa: replace_vae_attn_to_sdpa() def replace_vae_attn_to_memory_efficient(): print("VAE Attention.forward has been replaced to FlashAttention (not xformers)") flash_func = FlashAttentionFunction def forward_flash_attn(self, hidden_states, **kwargs): q_bucket_size = 512 k_bucket_size = 1024 residual = hidden_states batch, channel, height, width = hidden_states.shape # norm hidden_states = self.group_norm(hidden_states) hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2) # proj to q, k, v query_proj = self.to_q(hidden_states) key_proj = self.to_k(hidden_states) value_proj = self.to_v(hidden_states) query_proj, key_proj, value_proj = map( lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), (query_proj, key_proj, value_proj) ) out = flash_func.apply(query_proj, key_proj, value_proj, None, False, q_bucket_size, k_bucket_size) out = rearrange(out, "b h n d -> b n (h d)") # compute next hidden_states # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width) # res connect and rescale hidden_states = (hidden_states + residual) / self.rescale_output_factor return hidden_states def forward_flash_attn_0_14(self, hidden_states, **kwargs): if not hasattr(self, "to_q"): self.to_q = self.query self.to_k = self.key self.to_v = self.value self.to_out = [self.proj_attn, torch.nn.Identity()] self.heads = self.num_heads return forward_flash_attn(self, hidden_states, **kwargs) if diffusers.__version__ < "0.15.0": diffusers.models.attention.AttentionBlock.forward = forward_flash_attn_0_14 else: diffusers.models.attention_processor.Attention.forward = forward_flash_attn def replace_vae_attn_to_xformers(): print("VAE: Attention.forward has been replaced to xformers") import xformers.ops def forward_xformers(self, hidden_states, **kwargs): residual = hidden_states batch, channel, height, width = hidden_states.shape # norm hidden_states = self.group_norm(hidden_states) hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2) # proj to q, k, v query_proj = self.to_q(hidden_states) key_proj = self.to_k(hidden_states) value_proj = self.to_v(hidden_states) query_proj, key_proj, value_proj = map( lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), (query_proj, key_proj, value_proj) ) query_proj = query_proj.contiguous() key_proj = key_proj.contiguous() value_proj = value_proj.contiguous() out = xformers.ops.memory_efficient_attention(query_proj, key_proj, value_proj, attn_bias=None) out = rearrange(out, "b h n d -> b n (h d)") # compute next hidden_states # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width) # res connect and rescale hidden_states = (hidden_states + residual) / self.rescale_output_factor return hidden_states def forward_xformers_0_14(self, hidden_states, **kwargs): if not hasattr(self, "to_q"): self.to_q = self.query self.to_k = self.key self.to_v = self.value self.to_out = [self.proj_attn, torch.nn.Identity()] self.heads = self.num_heads return forward_xformers(self, hidden_states, **kwargs) if diffusers.__version__ < "0.15.0": diffusers.models.attention.AttentionBlock.forward = forward_xformers_0_14 else: diffusers.models.attention_processor.Attention.forward = forward_xformers def replace_vae_attn_to_sdpa(): print("VAE: Attention.forward has been replaced to sdpa") def forward_sdpa(self, hidden_states, **kwargs): residual = hidden_states batch, channel, height, width = hidden_states.shape # norm hidden_states = self.group_norm(hidden_states) hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2) # proj to q, k, v query_proj = self.to_q(hidden_states) key_proj = self.to_k(hidden_states) value_proj = self.to_v(hidden_states) query_proj, key_proj, value_proj = map( lambda t: rearrange(t, "b n (h d) -> b n h d", h=self.heads), (query_proj, key_proj, value_proj) ) out = torch.nn.functional.scaled_dot_product_attention( query_proj, key_proj, value_proj, attn_mask=None, dropout_p=0.0, is_causal=False ) out = rearrange(out, "b n h d -> b n (h d)") # compute next hidden_states # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width) # res connect and rescale hidden_states = (hidden_states + residual) / self.rescale_output_factor return hidden_states def forward_sdpa_0_14(self, hidden_states, **kwargs): if not hasattr(self, "to_q"): self.to_q = self.query self.to_k = self.key self.to_v = self.value self.to_out = [self.proj_attn, torch.nn.Identity()] self.heads = self.num_heads return forward_sdpa(self, hidden_states, **kwargs) if diffusers.__version__ < "0.15.0": diffusers.models.attention.AttentionBlock.forward = forward_sdpa_0_14 else: diffusers.models.attention_processor.Attention.forward = forward_sdpa # endregion # region 画像生成の本体:lpw_stable_diffusion.py (ASL)からコピーして修正 # https://github.com/huggingface/diffusers/blob/main/examples/community/lpw_stable_diffusion.py # Pipelineだけ独立して使えないのと機能追加するのとでコピーして修正 class PipelineLike: r""" Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing weighting in prompt. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ def __init__( self, device, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], clip_skip: int, clip_model: CLIPModel, clip_guidance_scale: float, clip_image_guidance_scale: float, vgg16_model: torchvision.models.VGG, vgg16_guidance_scale: float, vgg16_layer_no: int, # safety_checker: StableDiffusionSafetyChecker, # feature_extractor: CLIPFeatureExtractor, ): super().__init__() self.device = device self.clip_skip = clip_skip if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) self.vae = vae self.text_encoder = text_encoder self.tokenizer = tokenizer self.unet = unet self.scheduler = scheduler self.safety_checker = None # Textual Inversion self.token_replacements = {} # XTI self.token_replacements_XTI = {} # CLIP guidance self.clip_guidance_scale = clip_guidance_scale self.clip_image_guidance_scale = clip_image_guidance_scale self.clip_model = clip_model self.normalize = transforms.Normalize(mean=FEATURE_EXTRACTOR_IMAGE_MEAN, std=FEATURE_EXTRACTOR_IMAGE_STD) self.make_cutouts = MakeCutouts(FEATURE_EXTRACTOR_SIZE) # VGG16 guidance self.vgg16_guidance_scale = vgg16_guidance_scale if self.vgg16_guidance_scale > 0.0: return_layers = {f"{vgg16_layer_no}": "feat"} self.vgg16_feat_model = torchvision.models._utils.IntermediateLayerGetter( vgg16_model.features, return_layers=return_layers ) self.vgg16_normalize = transforms.Normalize(mean=VGG16_IMAGE_MEAN, std=VGG16_IMAGE_STD) # ControlNet self.control_nets: List[ControlNetInfo] = [] self.control_net_enabled = True # control_netsが空ならTrueでもFalseでもControlNetは動作しない # Textual Inversion def add_token_replacement(self, target_token_id, rep_token_ids): self.token_replacements[target_token_id] = rep_token_ids def set_enable_control_net(self, en: bool): self.control_net_enabled = en def replace_token(self, tokens, layer=None): new_tokens = [] for token in tokens: if token in self.token_replacements: replacer_ = self.token_replacements[token] if layer: replacer = [] for r in replacer_: if r in self.token_replacements_XTI: replacer.append(self.token_replacements_XTI[r][layer]) else: replacer = replacer_ new_tokens.extend(replacer) else: new_tokens.append(token) return new_tokens def add_token_replacement_XTI(self, target_token_id, rep_token_ids): self.token_replacements_XTI[target_token_id] = rep_token_ids def set_control_nets(self, ctrl_nets): self.control_nets = ctrl_nets # region xformersとか使う部分:独自に書き換えるので関係なし def enable_xformers_memory_efficient_attention(self): r""" Enable memory efficient attention as implemented in xformers. When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference time. Speed up at training time is not guaranteed. Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention is used. """ self.unet.set_use_memory_efficient_attention_xformers(True) def disable_xformers_memory_efficient_attention(self): r""" Disable memory efficient attention as implemented in xformers. """ self.unet.set_use_memory_efficient_attention_xformers(False) def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): r""" Enable sliced attention computation. When this option is enabled, the attention module will split the input tensor in slices, to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease. Args: slice_size (`str` or `int`, *optional*, defaults to `"auto"`): When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory slice_size = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(slice_size) def disable_attention_slicing(self): r""" Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go back to computing attention in one step. """ # set slice_size = `None` to disable `attention slicing` self.enable_attention_slicing(None) def enable_sequential_cpu_offload(self): r""" Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. """ # accelerateが必要になるのでとりあえず省略 raise NotImplementedError("cpu_offload is omitted.") # if is_accelerate_available(): # from accelerate import cpu_offload # else: # raise ImportError("Please install accelerate via `pip install accelerate`") # device = self.device # for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: # if cpu_offloaded_model is not None: # cpu_offload(cpu_offloaded_model, device) # endregion @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, init_image: Union[torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]] = None, mask_image: Union[torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]] = None, height: int = 512, width: int = 512, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_scale: float = None, strength: float = 0.8, # num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[torch.Generator] = None, latents: Optional[torch.FloatTensor] = None, max_embeddings_multiples: Optional[int] = 3, output_type: Optional[str] = "pil", vae_batch_size: float = None, return_latents: bool = False, # return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, is_cancelled_callback: Optional[Callable[[], bool]] = None, callback_steps: Optional[int] = 1, img2img_noise=None, clip_prompts=None, clip_guide_images=None, networks: Optional[List[LoRANetwork]] = None, **kwargs, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). init_image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. mask_image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `init_image`. White pixels in the mask will be replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to transform the reference `init_image`. Must be between 0 and 1. `init_image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `init_image`. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. max_embeddings_multiples (`int`, *optional*, defaults to `3`): The max multiple length of prompt embeddings compared to the max output length of text encoder. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. is_cancelled_callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. If the function returns `True`, the inference will be cancelled. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: `None` if cancelled by `is_cancelled_callback`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ num_images_per_prompt = 1 # fixed if isinstance(prompt, str): batch_size = 1 prompt = [prompt] elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") reginonal_network = " AND " in prompt[0] vae_batch_size = ( batch_size if vae_batch_size is None else (int(vae_batch_size) if vae_batch_size >= 1 else max(1, int(batch_size * vae_batch_size))) ) if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) # get prompt text embeddings # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 if not do_classifier_free_guidance and negative_scale is not None: print(f"negative_scale is ignored if guidance scalle <= 1.0") negative_scale = None # get unconditional embeddings for classifier free guidance if negative_prompt is None: negative_prompt = [""] * batch_size elif isinstance(negative_prompt, str): negative_prompt = [negative_prompt] * batch_size if batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) if not self.token_replacements_XTI: text_embeddings, uncond_embeddings, prompt_tokens = get_weighted_text_embeddings( pipe=self, prompt=prompt, uncond_prompt=negative_prompt if do_classifier_free_guidance else None, max_embeddings_multiples=max_embeddings_multiples, clip_skip=self.clip_skip, **kwargs, ) if negative_scale is not None: _, real_uncond_embeddings, _ = get_weighted_text_embeddings( pipe=self, prompt=prompt, # こちらのトークン長に合わせてuncondを作るので75トークン超で必須 uncond_prompt=[""] * batch_size, max_embeddings_multiples=max_embeddings_multiples, clip_skip=self.clip_skip, **kwargs, ) if self.token_replacements_XTI: text_embeddings_concat = [] for layer in [ "IN01", "IN02", "IN04", "IN05", "IN07", "IN08", "MID", "OUT03", "OUT04", "OUT05", "OUT06", "OUT07", "OUT08", "OUT09", "OUT10", "OUT11", ]: text_embeddings, uncond_embeddings, prompt_tokens = get_weighted_text_embeddings( pipe=self, prompt=prompt, uncond_prompt=negative_prompt if do_classifier_free_guidance else None, max_embeddings_multiples=max_embeddings_multiples, clip_skip=self.clip_skip, layer=layer, **kwargs, ) if do_classifier_free_guidance: if negative_scale is None: text_embeddings_concat.append(torch.cat([uncond_embeddings, text_embeddings])) else: text_embeddings_concat.append(torch.cat([uncond_embeddings, text_embeddings, real_uncond_embeddings])) text_embeddings = torch.stack(text_embeddings_concat) else: if do_classifier_free_guidance: if negative_scale is None: text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) else: text_embeddings = torch.cat([uncond_embeddings, text_embeddings, real_uncond_embeddings]) # CLIP guidanceで使用するembeddingsを取得する if self.clip_guidance_scale > 0: clip_text_input = prompt_tokens if clip_text_input.shape[1] > self.tokenizer.model_max_length: # TODO 75文字を超えたら警告を出す? print("trim text input", clip_text_input.shape) clip_text_input = torch.cat( [clip_text_input[:, : self.tokenizer.model_max_length - 1], clip_text_input[:, -1].unsqueeze(1)], dim=1 ) print("trimmed", clip_text_input.shape) for i, clip_prompt in enumerate(clip_prompts): if clip_prompt is not None: # clip_promptがあれば上書きする clip_text_input[i] = self.tokenizer( clip_prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ).input_ids.to(self.device) text_embeddings_clip = self.clip_model.get_text_features(clip_text_input) text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True) # prompt複数件でもOK if ( self.clip_image_guidance_scale > 0 or self.vgg16_guidance_scale > 0 and clip_guide_images is not None or self.control_nets ): if isinstance(clip_guide_images, PIL.Image.Image): clip_guide_images = [clip_guide_images] if self.clip_image_guidance_scale > 0: clip_guide_images = [preprocess_guide_image(im) for im in clip_guide_images] clip_guide_images = torch.cat(clip_guide_images, dim=0) clip_guide_images = self.normalize(clip_guide_images).to(self.device).to(text_embeddings.dtype) image_embeddings_clip = self.clip_model.get_image_features(clip_guide_images) image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) if len(image_embeddings_clip) == 1: image_embeddings_clip = image_embeddings_clip.repeat((batch_size, 1, 1, 1)) elif self.vgg16_guidance_scale > 0: size = (width // VGG16_INPUT_RESIZE_DIV, height // VGG16_INPUT_RESIZE_DIV) # とりあえず1/4に(小さいか?) clip_guide_images = [preprocess_vgg16_guide_image(im, size) for im in clip_guide_images] clip_guide_images = torch.cat(clip_guide_images, dim=0) clip_guide_images = self.vgg16_normalize(clip_guide_images).to(self.device).to(text_embeddings.dtype) image_embeddings_vgg16 = self.vgg16_feat_model(clip_guide_images)["feat"] if len(image_embeddings_vgg16) == 1: image_embeddings_vgg16 = image_embeddings_vgg16.repeat((batch_size, 1, 1, 1)) else: # ControlNetのhintにguide imageを流用する # 前処理はControlNet側で行う pass # set timesteps self.scheduler.set_timesteps(num_inference_steps, self.device) latents_dtype = text_embeddings.dtype init_latents_orig = None mask = None if init_image is None: # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. latents_shape = ( batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8, ) if latents is None: if self.device.type == "mps": # randn does not exist on mps latents = torch.randn( latents_shape, generator=generator, device="cpu", dtype=latents_dtype, ).to(self.device) else: latents = torch.randn( latents_shape, generator=generator, device=self.device, dtype=latents_dtype, ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") latents = latents.to(self.device) timesteps = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma else: # image to tensor if isinstance(init_image, PIL.Image.Image): init_image = [init_image] if isinstance(init_image[0], PIL.Image.Image): init_image = [preprocess_image(im) for im in init_image] init_image = torch.cat(init_image) if isinstance(init_image, list): init_image = torch.stack(init_image) # mask image to tensor if mask_image is not None: if isinstance(mask_image, PIL.Image.Image): mask_image = [mask_image] if isinstance(mask_image[0], PIL.Image.Image): mask_image = torch.cat([preprocess_mask(im) for im in mask_image]) # H*W, 0 for repaint # encode the init image into latents and scale the latents init_image = init_image.to(device=self.device, dtype=latents_dtype) if init_image.size()[-2:] == (height // 8, width // 8): init_latents = init_image else: if vae_batch_size >= batch_size: init_latent_dist = self.vae.encode(init_image).latent_dist init_latents = init_latent_dist.sample(generator=generator) else: if torch.cuda.is_available(): torch.cuda.empty_cache() init_latents = [] for i in tqdm(range(0, min(batch_size, len(init_image)), vae_batch_size)): init_latent_dist = self.vae.encode( init_image[i : i + vae_batch_size] if vae_batch_size > 1 else init_image[i].unsqueeze(0) ).latent_dist init_latents.append(init_latent_dist.sample(generator=generator)) init_latents = torch.cat(init_latents) init_latents = 0.18215 * init_latents if len(init_latents) == 1: init_latents = init_latents.repeat((batch_size, 1, 1, 1)) init_latents_orig = init_latents # preprocess mask if mask_image is not None: mask = mask_image.to(device=self.device, dtype=latents_dtype) if len(mask) == 1: mask = mask.repeat((batch_size, 1, 1, 1)) # check sizes if not mask.shape == init_latents.shape: raise ValueError("The mask and init_image should be the same size!") # get the original timestep using init_timestep offset = self.scheduler.config.get("steps_offset", 0) init_timestep = int(num_inference_steps * strength) + offset init_timestep = min(init_timestep, num_inference_steps) timesteps = self.scheduler.timesteps[-init_timestep] timesteps = torch.tensor([timesteps] * batch_size * num_images_per_prompt, device=self.device) # add noise to latents using the timesteps latents = self.scheduler.add_noise(init_latents, img2img_noise, timesteps) t_start = max(num_inference_steps - init_timestep + offset, 0) timesteps = self.scheduler.timesteps[t_start:].to(self.device) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta num_latent_input = (3 if negative_scale is not None else 2) if do_classifier_free_guidance else 1 if self.control_nets: guided_hints = original_control_net.get_guided_hints(self.control_nets, num_latent_input, batch_size, clip_guide_images) if reginonal_network: num_sub_and_neg_prompts = len(text_embeddings) // batch_size # last subprompt and negative prompt text_emb_last = [] for j in range(batch_size): text_emb_last.append(text_embeddings[(j + 1) * num_sub_and_neg_prompts - 2]) text_emb_last.append(text_embeddings[(j + 1) * num_sub_and_neg_prompts - 1]) text_emb_last = torch.stack(text_emb_last) else: text_emb_last = text_embeddings for i, t in enumerate(tqdm(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = latents.repeat((num_latent_input, 1, 1, 1)) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual if self.control_nets and self.control_net_enabled: noise_pred = original_control_net.call_unet_and_control_net( i, num_latent_input, self.unet, self.control_nets, guided_hints, i / len(timesteps), latent_model_input, t, text_embeddings, text_emb_last, ).sample else: noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # perform guidance if do_classifier_free_guidance: if negative_scale is None: noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_latent_input) # uncond by negative prompt noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) else: noise_pred_negative, noise_pred_text, noise_pred_uncond = noise_pred.chunk( num_latent_input ) # uncond is real uncond noise_pred = ( noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) - negative_scale * (noise_pred_negative - noise_pred_uncond) ) # perform clip guidance if self.clip_guidance_scale > 0 or self.clip_image_guidance_scale > 0 or self.vgg16_guidance_scale > 0: text_embeddings_for_guidance = ( text_embeddings.chunk(num_latent_input)[1] if do_classifier_free_guidance else text_embeddings ) if self.clip_guidance_scale > 0: noise_pred, latents = self.cond_fn( latents, t, i, text_embeddings_for_guidance, noise_pred, text_embeddings_clip, self.clip_guidance_scale, NUM_CUTOUTS, USE_CUTOUTS, ) if self.clip_image_guidance_scale > 0 and clip_guide_images is not None: noise_pred, latents = self.cond_fn( latents, t, i, text_embeddings_for_guidance, noise_pred, image_embeddings_clip, self.clip_image_guidance_scale, NUM_CUTOUTS, USE_CUTOUTS, ) if self.vgg16_guidance_scale > 0 and clip_guide_images is not None: noise_pred, latents = self.cond_fn_vgg16( latents, t, i, text_embeddings_for_guidance, noise_pred, image_embeddings_vgg16, self.vgg16_guidance_scale ) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample if mask is not None: # masking init_latents_proper = self.scheduler.add_noise(init_latents_orig, img2img_noise, torch.tensor([t])) latents = (init_latents_proper * mask) + (latents * (1 - mask)) # call the callback, if provided if i % callback_steps == 0: if callback is not None: callback(i, t, latents) if is_cancelled_callback is not None and is_cancelled_callback(): return None if return_latents: return (latents, False) latents = 1 / 0.18215 * latents if vae_batch_size >= batch_size: image = self.vae.decode(latents).sample else: if torch.cuda.is_available(): torch.cuda.empty_cache() images = [] for i in tqdm(range(0, batch_size, vae_batch_size)): images.append( self.vae.decode(latents[i : i + vae_batch_size] if vae_batch_size > 1 else latents[i].unsqueeze(0)).sample ) image = torch.cat(images) image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() if self.safety_checker is not None: safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype), ) else: has_nsfw_concept = None if output_type == "pil": # image = self.numpy_to_pil(image) image = (image * 255).round().astype("uint8") image = [Image.fromarray(im) for im in image] # if not return_dict: return (image, has_nsfw_concept) # return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) def text2img( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, height: int = 512, width: int = 512, num_inference_steps: int = 50, guidance_scale: float = 7.5, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[torch.Generator] = None, latents: Optional[torch.FloatTensor] = None, max_embeddings_multiples: Optional[int] = 3, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, **kwargs, ): r""" Function for text-to-image generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. max_embeddings_multiples (`int`, *optional*, defaults to `3`): The max multiple length of prompt embeddings compared to the max output length of text encoder. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ return self.__call__( prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, max_embeddings_multiples=max_embeddings_multiples, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, **kwargs, ) def img2img( self, init_image: Union[torch.FloatTensor, PIL.Image.Image], prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[torch.Generator] = None, max_embeddings_multiples: Optional[int] = 3, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, **kwargs, ): r""" Function for image-to-image generation. Args: init_image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to transform the reference `init_image`. Must be between 0 and 1. `init_image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `init_image`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter will be modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. max_embeddings_multiples (`int`, *optional*, defaults to `3`): The max multiple length of prompt embeddings compared to the max output length of text encoder. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ return self.__call__( prompt=prompt, negative_prompt=negative_prompt, init_image=init_image, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, strength=strength, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, max_embeddings_multiples=max_embeddings_multiples, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, **kwargs, ) def inpaint( self, init_image: Union[torch.FloatTensor, PIL.Image.Image], mask_image: Union[torch.FloatTensor, PIL.Image.Image], prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[torch.Generator] = None, max_embeddings_multiples: Optional[int] = 3, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, **kwargs, ): r""" Function for inpaint. Args: init_image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. This is the image whose masked region will be inpainted. mask_image (`torch.FloatTensor` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `init_image`. White pixels in the mask will be replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength` is 1, the denoising process will be run on the masked area for the full number of iterations specified in `num_inference_steps`. `init_image` will be used as a reference for the masked area, adding more noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur. num_inference_steps (`int`, *optional*, defaults to 50): The reference number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter will be modulated by `strength`, as explained above. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. max_embeddings_multiples (`int`, *optional*, defaults to `3`): The max multiple length of prompt embeddings compared to the max output length of text encoder. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ return self.__call__( prompt=prompt, negative_prompt=negative_prompt, init_image=init_image, mask_image=mask_image, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, strength=strength, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, max_embeddings_multiples=max_embeddings_multiples, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, **kwargs, ) # CLIP guidance StableDiffusion # copy from https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py # バッチを分解して1件ずつ処理する def cond_fn( self, latents, timestep, index, text_embeddings, noise_pred_original, guide_embeddings_clip, clip_guidance_scale, num_cutouts, use_cutouts=True, ): if len(latents) == 1: return self.cond_fn1( latents, timestep, index, text_embeddings, noise_pred_original, guide_embeddings_clip, clip_guidance_scale, num_cutouts, use_cutouts, ) noise_pred = [] cond_latents = [] for i in range(len(latents)): lat1 = latents[i].unsqueeze(0) tem1 = text_embeddings[i].unsqueeze(0) npo1 = noise_pred_original[i].unsqueeze(0) gem1 = guide_embeddings_clip[i].unsqueeze(0) npr1, cla1 = self.cond_fn1(lat1, timestep, index, tem1, npo1, gem1, clip_guidance_scale, num_cutouts, use_cutouts) noise_pred.append(npr1) cond_latents.append(cla1) noise_pred = torch.cat(noise_pred) cond_latents = torch.cat(cond_latents) return noise_pred, cond_latents @torch.enable_grad() def cond_fn1( self, latents, timestep, index, text_embeddings, noise_pred_original, guide_embeddings_clip, clip_guidance_scale, num_cutouts, use_cutouts=True, ): latents = latents.detach().requires_grad_() if isinstance(self.scheduler, LMSDiscreteScheduler): sigma = self.scheduler.sigmas[index] # the model input needs to be scaled to match the continuous ODE formulation in K-LMS latent_model_input = latents / ((sigma**2 + 1) ** 0.5) else: latent_model_input = latents # predict the noise residual noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler)): alpha_prod_t = self.scheduler.alphas_cumprod[timestep] beta_prod_t = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) fac = torch.sqrt(beta_prod_t) sample = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, LMSDiscreteScheduler): sigma = self.scheduler.sigmas[index] sample = latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler)} not supported") sample = 1 / 0.18215 * sample image = self.vae.decode(sample).sample image = (image / 2 + 0.5).clamp(0, 1) if use_cutouts: image = self.make_cutouts(image, num_cutouts) else: image = transforms.Resize(FEATURE_EXTRACTOR_SIZE)(image) image = self.normalize(image).to(latents.dtype) image_embeddings_clip = self.clip_model.get_image_features(image) image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) if use_cutouts: dists = spherical_dist_loss(image_embeddings_clip, guide_embeddings_clip) dists = dists.view([num_cutouts, sample.shape[0], -1]) loss = dists.sum(2).mean(0).sum() * clip_guidance_scale else: # バッチサイズが複数だと正しく動くかわからない loss = spherical_dist_loss(image_embeddings_clip, guide_embeddings_clip).mean() * clip_guidance_scale grads = -torch.autograd.grad(loss, latents)[0] if isinstance(self.scheduler, LMSDiscreteScheduler): latents = latents.detach() + grads * (sigma**2) noise_pred = noise_pred_original else: noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads return noise_pred, latents # バッチを分解して一件ずつ処理する def cond_fn_vgg16(self, latents, timestep, index, text_embeddings, noise_pred_original, guide_embeddings, guidance_scale): if len(latents) == 1: return self.cond_fn_vgg16_b1( latents, timestep, index, text_embeddings, noise_pred_original, guide_embeddings, guidance_scale ) noise_pred = [] cond_latents = [] for i in range(len(latents)): lat1 = latents[i].unsqueeze(0) tem1 = text_embeddings[i].unsqueeze(0) npo1 = noise_pred_original[i].unsqueeze(0) gem1 = guide_embeddings[i].unsqueeze(0) npr1, cla1 = self.cond_fn_vgg16_b1(lat1, timestep, index, tem1, npo1, gem1, guidance_scale) noise_pred.append(npr1) cond_latents.append(cla1) noise_pred = torch.cat(noise_pred) cond_latents = torch.cat(cond_latents) return noise_pred, cond_latents # 1件だけ処理する @torch.enable_grad() def cond_fn_vgg16_b1(self, latents, timestep, index, text_embeddings, noise_pred_original, guide_embeddings, guidance_scale): latents = latents.detach().requires_grad_() if isinstance(self.scheduler, LMSDiscreteScheduler): sigma = self.scheduler.sigmas[index] # the model input needs to be scaled to match the continuous ODE formulation in K-LMS latent_model_input = latents / ((sigma**2 + 1) ** 0.5) else: latent_model_input = latents # predict the noise residual noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler)): alpha_prod_t = self.scheduler.alphas_cumprod[timestep] beta_prod_t = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) fac = torch.sqrt(beta_prod_t) sample = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, LMSDiscreteScheduler): sigma = self.scheduler.sigmas[index] sample = latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler)} not supported") sample = 1 / 0.18215 * sample image = self.vae.decode(sample).sample image = (image / 2 + 0.5).clamp(0, 1) image = transforms.Resize((image.shape[-2] // VGG16_INPUT_RESIZE_DIV, image.shape[-1] // VGG16_INPUT_RESIZE_DIV))(image) image = self.vgg16_normalize(image).to(latents.dtype) image_embeddings = self.vgg16_feat_model(image)["feat"] # バッチサイズが複数だと正しく動くかわからない loss = ((image_embeddings - guide_embeddings) ** 2).mean() * guidance_scale # MSE style transferでコンテンツの損失はMSEなので grads = -torch.autograd.grad(loss, latents)[0] if isinstance(self.scheduler, LMSDiscreteScheduler): latents = latents.detach() + grads * (sigma**2) noise_pred = noise_pred_original else: noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads return noise_pred, latents class MakeCutouts(torch.nn.Module): def __init__(self, cut_size, cut_power=1.0): super().__init__() self.cut_size = cut_size self.cut_power = cut_power def forward(self, pixel_values, num_cutouts): sideY, sideX = pixel_values.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] for _ in range(num_cutouts): size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size) offsetx = torch.randint(0, sideX - size + 1, ()) offsety = torch.randint(0, sideY - size + 1, ()) cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size] cutouts.append(torch.nn.functional.adaptive_avg_pool2d(cutout, self.cut_size)) return torch.cat(cutouts) def spherical_dist_loss(x, y): x = torch.nn.functional.normalize(x, dim=-1) y = torch.nn.functional.normalize(y, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) re_attention = re.compile( r""" \\\(| \\\)| \\\[| \\]| \\\\| \\| \(| \[| :([+-]?[.\d]+)\)| \)| ]| [^\\()\[\]:]+| : """, re.X, ) def parse_prompt_attention(text): """ Parses a string with attention tokens and returns a list of pairs: text and its associated weight. Accepted tokens are: (abc) - increases attention to abc by a multiplier of 1.1 (abc:3.12) - increases attention to abc by a multiplier of 3.12 [abc] - decreases attention to abc by a multiplier of 1.1 \( - literal character '(' \[ - literal character '[' \) - literal character ')' \] - literal character ']' \\ - literal character '\' anything else - just text >>> parse_prompt_attention('normal text') [['normal text', 1.0]] >>> parse_prompt_attention('an (important) word') [['an ', 1.0], ['important', 1.1], [' word', 1.0]] >>> parse_prompt_attention('(unbalanced') [['unbalanced', 1.1]] >>> parse_prompt_attention('\(literal\]') [['(literal]', 1.0]] >>> parse_prompt_attention('(unnecessary)(parens)') [['unnecessaryparens', 1.1]] >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') [['a ', 1.0], ['house', 1.5730000000000004], [' ', 1.1], ['on', 1.0], [' a ', 1.1], ['hill', 0.55], [', sun, ', 1.1], ['sky', 1.4641000000000006], ['.', 1.1]] """ res = [] round_brackets = [] square_brackets = [] round_bracket_multiplier = 1.1 square_bracket_multiplier = 1 / 1.1 def multiply_range(start_position, multiplier): for p in range(start_position, len(res)): res[p][1] *= multiplier # keep break as separate token text = text.replace("BREAK", "\\BREAK\\") for m in re_attention.finditer(text): text = m.group(0) weight = m.group(1) if text.startswith("\\"): res.append([text[1:], 1.0]) elif text == "(": round_brackets.append(len(res)) elif text == "[": square_brackets.append(len(res)) elif weight is not None and len(round_brackets) > 0: multiply_range(round_brackets.pop(), float(weight)) elif text == ")" and len(round_brackets) > 0: multiply_range(round_brackets.pop(), round_bracket_multiplier) elif text == "]" and len(square_brackets) > 0: multiply_range(square_brackets.pop(), square_bracket_multiplier) else: res.append([text, 1.0]) for pos in round_brackets: multiply_range(pos, round_bracket_multiplier) for pos in square_brackets: multiply_range(pos, square_bracket_multiplier) if len(res) == 0: res = [["", 1.0]] # merge runs of identical weights i = 0 while i + 1 < len(res): if res[i][1] == res[i + 1][1] and res[i][0].strip() != "BREAK" and res[i + 1][0].strip() != "BREAK": res[i][0] += res[i + 1][0] res.pop(i + 1) else: i += 1 return res def get_prompts_with_weights(pipe: PipelineLike, prompt: List[str], max_length: int, layer=None): r""" Tokenize a list of prompts and return its tokens with weights of each token. No padding, starting or ending token is included. """ tokens = [] weights = [] truncated = False for text in prompt: texts_and_weights = parse_prompt_attention(text) text_token = [] text_weight = [] for word, weight in texts_and_weights: if word.strip() == "BREAK": # pad until next multiple of tokenizer's max token length pad_len = pipe.tokenizer.model_max_length - (len(text_token) % pipe.tokenizer.model_max_length) print(f"BREAK pad_len: {pad_len}") for i in range(pad_len): # v2のときEOSをつけるべきかどうかわからないぜ # if i == 0: # text_token.append(pipe.tokenizer.eos_token_id) # else: text_token.append(pipe.tokenizer.pad_token_id) text_weight.append(1.0) continue # tokenize and discard the starting and the ending token token = pipe.tokenizer(word).input_ids[1:-1] token = pipe.replace_token(token, layer=layer) text_token += token # copy the weight by length of token text_weight += [weight] * len(token) # stop if the text is too long (longer than truncation limit) if len(text_token) > max_length: truncated = True break # truncate if len(text_token) > max_length: truncated = True text_token = text_token[:max_length] text_weight = text_weight[:max_length] tokens.append(text_token) weights.append(text_weight) if truncated: print("warning: Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples") return tokens, weights def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77): r""" Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length. """ max_embeddings_multiples = (max_length - 2) // (chunk_length - 2) weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length for i in range(len(tokens)): tokens[i] = [bos] + tokens[i] + [eos] + [pad] * (max_length - 2 - len(tokens[i])) if no_boseos_middle: weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i])) else: w = [] if len(weights[i]) == 0: w = [1.0] * weights_length else: for j in range(max_embeddings_multiples): w.append(1.0) # weight for starting token in this chunk w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))] w.append(1.0) # weight for ending token in this chunk w += [1.0] * (weights_length - len(w)) weights[i] = w[:] return tokens, weights def get_unweighted_text_embeddings( pipe: PipelineLike, text_input: torch.Tensor, chunk_length: int, clip_skip: int, eos: int, pad: int, no_boseos_middle: Optional[bool] = True, ): """ When the length of tokens is a multiple of the capacity of the text encoder, it should be split into chunks and sent to the text encoder individually. """ max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2) if max_embeddings_multiples > 1: text_embeddings = [] for i in range(max_embeddings_multiples): # extract the i-th chunk text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone() # cover the head and the tail by the starting and the ending tokens text_input_chunk[:, 0] = text_input[0, 0] if pad == eos: # v1 text_input_chunk[:, -1] = text_input[0, -1] else: # v2 for j in range(len(text_input_chunk)): if text_input_chunk[j, -1] != eos and text_input_chunk[j, -1] != pad: # 最後に普通の文字がある text_input_chunk[j, -1] = eos if text_input_chunk[j, 1] == pad: # BOSだけであとはPAD text_input_chunk[j, 1] = eos if clip_skip is None or clip_skip == 1: text_embedding = pipe.text_encoder(text_input_chunk)[0] else: enc_out = pipe.text_encoder(text_input_chunk, output_hidden_states=True, return_dict=True) text_embedding = enc_out["hidden_states"][-clip_skip] text_embedding = pipe.text_encoder.text_model.final_layer_norm(text_embedding) if no_boseos_middle: if i == 0: # discard the ending token text_embedding = text_embedding[:, :-1] elif i == max_embeddings_multiples - 1: # discard the starting token text_embedding = text_embedding[:, 1:] else: # discard both starting and ending tokens text_embedding = text_embedding[:, 1:-1] text_embeddings.append(text_embedding) text_embeddings = torch.concat(text_embeddings, axis=1) else: if clip_skip is None or clip_skip == 1: text_embeddings = pipe.text_encoder(text_input)[0] else: enc_out = pipe.text_encoder(text_input, output_hidden_states=True, return_dict=True) text_embeddings = enc_out["hidden_states"][-clip_skip] text_embeddings = pipe.text_encoder.text_model.final_layer_norm(text_embeddings) return text_embeddings def get_weighted_text_embeddings( pipe: PipelineLike, prompt: Union[str, List[str]], uncond_prompt: Optional[Union[str, List[str]]] = None, max_embeddings_multiples: Optional[int] = 1, no_boseos_middle: Optional[bool] = False, skip_parsing: Optional[bool] = False, skip_weighting: Optional[bool] = False, clip_skip=None, layer=None, **kwargs, ): r""" Prompts can be assigned with local weights using brackets. For example, prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful', and the embedding tokens corresponding to the words get multiplied by a constant, 1.1. Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean. Args: pipe (`DiffusionPipeline`): Pipe to provide access to the tokenizer and the text encoder. prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. uncond_prompt (`str` or `List[str]`): The unconditional prompt or prompts for guide the image generation. If unconditional prompt is provided, the embeddings of prompt and uncond_prompt are concatenated. max_embeddings_multiples (`int`, *optional*, defaults to `1`): The max multiple length of prompt embeddings compared to the max output length of text encoder. no_boseos_middle (`bool`, *optional*, defaults to `False`): If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and ending token in each of the chunk in the middle. skip_parsing (`bool`, *optional*, defaults to `False`): Skip the parsing of brackets. skip_weighting (`bool`, *optional*, defaults to `False`): Skip the weighting. When the parsing is skipped, it is forced True. """ max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 if isinstance(prompt, str): prompt = [prompt] # split the prompts with "AND". each prompt must have the same number of splits new_prompts = [] for p in prompt: new_prompts.extend(p.split(" AND ")) prompt = new_prompts if not skip_parsing: prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2, layer=layer) if uncond_prompt is not None: if isinstance(uncond_prompt, str): uncond_prompt = [uncond_prompt] uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2, layer=layer) else: prompt_tokens = [token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids] prompt_weights = [[1.0] * len(token) for token in prompt_tokens] if uncond_prompt is not None: if isinstance(uncond_prompt, str): uncond_prompt = [uncond_prompt] uncond_tokens = [ token[1:-1] for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids ] uncond_weights = [[1.0] * len(token) for token in uncond_tokens] # round up the longest length of tokens to a multiple of (model_max_length - 2) max_length = max([len(token) for token in prompt_tokens]) if uncond_prompt is not None: max_length = max(max_length, max([len(token) for token in uncond_tokens])) max_embeddings_multiples = min( max_embeddings_multiples, (max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1, ) max_embeddings_multiples = max(1, max_embeddings_multiples) max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2 # pad the length of tokens and weights bos = pipe.tokenizer.bos_token_id eos = pipe.tokenizer.eos_token_id pad = pipe.tokenizer.pad_token_id prompt_tokens, prompt_weights = pad_tokens_and_weights( prompt_tokens, prompt_weights, max_length, bos, eos, pad, no_boseos_middle=no_boseos_middle, chunk_length=pipe.tokenizer.model_max_length, ) prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device) if uncond_prompt is not None: uncond_tokens, uncond_weights = pad_tokens_and_weights( uncond_tokens, uncond_weights, max_length, bos, eos, pad, no_boseos_middle=no_boseos_middle, chunk_length=pipe.tokenizer.model_max_length, ) uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device) # get the embeddings text_embeddings = get_unweighted_text_embeddings( pipe, prompt_tokens, pipe.tokenizer.model_max_length, clip_skip, eos, pad, no_boseos_middle=no_boseos_middle, ) prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=pipe.device) if uncond_prompt is not None: uncond_embeddings = get_unweighted_text_embeddings( pipe, uncond_tokens, pipe.tokenizer.model_max_length, clip_skip, eos, pad, no_boseos_middle=no_boseos_middle, ) uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=pipe.device) # assign weights to the prompts and normalize in the sense of mean # TODO: should we normalize by chunk or in a whole (current implementation)? # →全体でいいんじゃないかな if (not skip_parsing) and (not skip_weighting): previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype) text_embeddings *= prompt_weights.unsqueeze(-1) current_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype) text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1) if uncond_prompt is not None: previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype) uncond_embeddings *= uncond_weights.unsqueeze(-1) current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype) uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1) if uncond_prompt is not None: return text_embeddings, uncond_embeddings, prompt_tokens return text_embeddings, None, prompt_tokens def preprocess_guide_image(image): image = image.resize(FEATURE_EXTRACTOR_SIZE, resample=Image.NEAREST) # cond_fnと合わせる image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) # nchw image = torch.from_numpy(image) return image # 0 to 1 # VGG16の入力は任意サイズでよいので入力画像を適宜リサイズする def preprocess_vgg16_guide_image(image, size): image = image.resize(size, resample=Image.NEAREST) # cond_fnと合わせる image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) # nchw image = torch.from_numpy(image) return image # 0 to 1 def preprocess_image(image): w, h = image.size w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 image = image.resize((w, h), resample=PIL.Image.LANCZOS) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) return 2.0 * image - 1.0 def preprocess_mask(mask): mask = mask.convert("L") w, h = mask.size w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 mask = mask.resize((w // 8, h // 8), resample=PIL.Image.BILINEAR) # LANCZOS) mask = np.array(mask).astype(np.float32) / 255.0 mask = np.tile(mask, (4, 1, 1)) mask = mask[None].transpose(0, 1, 2, 3) # what does this step do? mask = 1 - mask # repaint white, keep black mask = torch.from_numpy(mask) return mask # regular expression for dynamic prompt: # starts and ends with "{" and "}" # contains at least one variant divided by "|" # optional framgments divided by "$$" at start # if the first fragment is "E" or "e", enumerate all variants # if the second fragment is a number or two numbers, repeat the variants in the range # if the third fragment is a string, use it as a separator RE_DYNAMIC_PROMPT = re.compile(r"\{((e|E)\$\$)?(([\d\-]+)\$\$)?(([^\|\}]+?)\$\$)?(.+?((\|).+?)*?)\}") def handle_dynamic_prompt_variants(prompt, repeat_count): founds = list(RE_DYNAMIC_PROMPT.finditer(prompt)) if not founds: return [prompt] # make each replacement for each variant enumerating = False replacers = [] for found in founds: # if "e$$" is found, enumerate all variants found_enumerating = found.group(2) is not None enumerating = enumerating or found_enumerating separator = ", " if found.group(6) is None else found.group(6) variants = found.group(7).split("|") # parse count range count_range = found.group(4) if count_range is None: count_range = [1, 1] else: count_range = count_range.split("-") if len(count_range) == 1: count_range = [int(count_range[0]), int(count_range[0])] elif len(count_range) == 2: count_range = [int(count_range[0]), int(count_range[1])] else: print(f"invalid count range: {count_range}") count_range = [1, 1] if count_range[0] > count_range[1]: count_range = [count_range[1], count_range[0]] if count_range[0] < 0: count_range[0] = 0 if count_range[1] > len(variants): count_range[1] = len(variants) if found_enumerating: # make function to enumerate all combinations def make_replacer_enum(vari, cr, sep): def replacer(): values = [] for count in range(cr[0], cr[1] + 1): for comb in itertools.combinations(vari, count): values.append(sep.join(comb)) return values return replacer replacers.append(make_replacer_enum(variants, count_range, separator)) else: # make function to choose random combinations def make_replacer_single(vari, cr, sep): def replacer(): count = random.randint(cr[0], cr[1]) comb = random.sample(vari, count) return [sep.join(comb)] return replacer replacers.append(make_replacer_single(variants, count_range, separator)) # make each prompt if not enumerating: # if not enumerating, repeat the prompt, replace each variant randomly prompts = [] for _ in range(repeat_count): current = prompt for found, replacer in zip(founds, replacers): current = current.replace(found.group(0), replacer()[0], 1) prompts.append(current) else: # if enumerating, iterate all combinations for previous prompts prompts = [prompt] for found, replacer in zip(founds, replacers): if found.group(2) is not None: # make all combinations for existing prompts new_prompts = [] for current in prompts: replecements = replacer() for replecement in replecements: new_prompts.append(current.replace(found.group(0), replecement, 1)) prompts = new_prompts for found, replacer in zip(founds, replacers): # make random selection for existing prompts if found.group(2) is None: for i in range(len(prompts)): prompts[i] = prompts[i].replace(found.group(0), replacer()[0], 1) return prompts # endregion # def load_clip_l14_336(dtype): # print(f"loading CLIP: {CLIP_ID_L14_336}") # text_encoder = CLIPTextModel.from_pretrained(CLIP_ID_L14_336, torch_dtype=dtype) # return text_encoder class BatchDataBase(NamedTuple): # バッチ分割が必要ないデータ step: int prompt: str negative_prompt: str seed: int init_image: Any mask_image: Any clip_prompt: str guide_image: Any class BatchDataExt(NamedTuple): # バッチ分割が必要なデータ width: int height: int steps: int scale: float negative_scale: float strength: float network_muls: Tuple[float] num_sub_prompts: int class BatchData(NamedTuple): return_latents: bool base: BatchDataBase ext: BatchDataExt def main(args): if args.fp16: dtype = torch.float16 elif args.bf16: dtype = torch.bfloat16 else: dtype = torch.float32 highres_fix = args.highres_fix_scale is not None # assert not highres_fix or args.image_path is None, f"highres_fix doesn't work with img2img / highres_fixはimg2imgと同時に使えません" if args.v_parameterization and not args.v2: print("v_parameterization should be with v2 / v1でv_parameterizationを使用することは想定されていません") if args.v2 and args.clip_skip is not None: print("v2 with clip_skip will be unexpected / v2でclip_skipを使用することは想定されていません") # モデルを読み込む if not os.path.isfile(args.ckpt): # ファイルがないならパターンで探し、一つだけ該当すればそれを使う files = glob.glob(args.ckpt) if len(files) == 1: args.ckpt = files[0] use_stable_diffusion_format = os.path.isfile(args.ckpt) if use_stable_diffusion_format: print("load StableDiffusion checkpoint") text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.ckpt) else: print("load Diffusers pretrained models") loading_pipe = StableDiffusionPipeline.from_pretrained(args.ckpt, safety_checker=None, torch_dtype=dtype) text_encoder = loading_pipe.text_encoder vae = loading_pipe.vae unet = loading_pipe.unet tokenizer = loading_pipe.tokenizer del loading_pipe # Diffusers U-Net to original U-Net original_unet = UNet2DConditionModel( unet.config.sample_size, unet.config.attention_head_dim, unet.config.cross_attention_dim, unet.config.use_linear_projection, unet.config.upcast_attention, ) original_unet.load_state_dict(unet.state_dict()) unet = original_unet # VAEを読み込む if args.vae is not None: vae = model_util.load_vae(args.vae, dtype) print("additional VAE loaded") # # 置換するCLIPを読み込む # if args.replace_clip_l14_336: # text_encoder = load_clip_l14_336(dtype) # print(f"large clip {CLIP_ID_L14_336} is loaded") if args.clip_guidance_scale > 0.0 or args.clip_image_guidance_scale: print("prepare clip model") clip_model = CLIPModel.from_pretrained(CLIP_MODEL_PATH, torch_dtype=dtype) else: clip_model = None if args.vgg16_guidance_scale > 0.0: print("prepare resnet model") vgg16_model = torchvision.models.vgg16(torchvision.models.VGG16_Weights.IMAGENET1K_V1) else: vgg16_model = None # xformers、Hypernetwork対応 if not args.diffusers_xformers: mem_eff = not (args.xformers or args.sdpa) replace_unet_modules(unet, mem_eff, args.xformers, args.sdpa) replace_vae_modules(vae, mem_eff, args.xformers, args.sdpa) # tokenizerを読み込む print("loading tokenizer") if use_stable_diffusion_format: tokenizer = train_util.load_tokenizer(args) # schedulerを用意する sched_init_args = {} scheduler_num_noises_per_step = 1 if args.sampler == "ddim": scheduler_cls = DDIMScheduler scheduler_module = diffusers.schedulers.scheduling_ddim elif args.sampler == "ddpm": # ddpmはおかしくなるのでoptionから外してある scheduler_cls = DDPMScheduler scheduler_module = diffusers.schedulers.scheduling_ddpm elif args.sampler == "pndm": scheduler_cls = PNDMScheduler scheduler_module = diffusers.schedulers.scheduling_pndm elif args.sampler == "lms" or args.sampler == "k_lms": scheduler_cls = LMSDiscreteScheduler scheduler_module = diffusers.schedulers.scheduling_lms_discrete elif args.sampler == "euler" or args.sampler == "k_euler": scheduler_cls = EulerDiscreteScheduler scheduler_module = diffusers.schedulers.scheduling_euler_discrete elif args.sampler == "euler_a" or args.sampler == "k_euler_a": scheduler_cls = EulerAncestralDiscreteScheduler scheduler_module = diffusers.schedulers.scheduling_euler_ancestral_discrete elif args.sampler == "dpmsolver" or args.sampler == "dpmsolver++": scheduler_cls = DPMSolverMultistepScheduler sched_init_args["algorithm_type"] = args.sampler scheduler_module = diffusers.schedulers.scheduling_dpmsolver_multistep elif args.sampler == "dpmsingle": scheduler_cls = DPMSolverSinglestepScheduler scheduler_module = diffusers.schedulers.scheduling_dpmsolver_singlestep elif args.sampler == "heun": scheduler_cls = HeunDiscreteScheduler scheduler_module = diffusers.schedulers.scheduling_heun_discrete elif args.sampler == "dpm_2" or args.sampler == "k_dpm_2": scheduler_cls = KDPM2DiscreteScheduler scheduler_module = diffusers.schedulers.scheduling_k_dpm_2_discrete elif args.sampler == "dpm_2_a" or args.sampler == "k_dpm_2_a": scheduler_cls = KDPM2AncestralDiscreteScheduler scheduler_module = diffusers.schedulers.scheduling_k_dpm_2_ancestral_discrete scheduler_num_noises_per_step = 2 if args.v_parameterization: sched_init_args["prediction_type"] = "v_prediction" # samplerの乱数をあらかじめ指定するための処理 # replace randn class NoiseManager: def __init__(self): self.sampler_noises = None self.sampler_noise_index = 0 def reset_sampler_noises(self, noises): self.sampler_noise_index = 0 self.sampler_noises = noises def randn(self, shape, device=None, dtype=None, layout=None, generator=None): # print("replacing", shape, len(self.sampler_noises), self.sampler_noise_index) if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises): noise = self.sampler_noises[self.sampler_noise_index] if shape != noise.shape: noise = None else: noise = None if noise == None: print(f"unexpected noise request: {self.sampler_noise_index}, {shape}") noise = torch.randn(shape, dtype=dtype, device=device, generator=generator) self.sampler_noise_index += 1 return noise class TorchRandReplacer: def __init__(self, noise_manager): self.noise_manager = noise_manager def __getattr__(self, item): if item == "randn": return self.noise_manager.randn if hasattr(torch, item): return getattr(torch, item) raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) noise_manager = NoiseManager() if scheduler_module is not None: scheduler_module.torch = TorchRandReplacer(noise_manager) scheduler = scheduler_cls( num_train_timesteps=SCHEDULER_TIMESTEPS, beta_start=SCHEDULER_LINEAR_START, beta_end=SCHEDULER_LINEAR_END, beta_schedule=SCHEDLER_SCHEDULE, **sched_init_args, ) # clip_sample=Trueにする if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is False: print("set clip_sample to True") scheduler.config.clip_sample = True # deviceを決定する device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # "mps"を考量してない # custom pipelineをコピったやつを生成する if args.vae_slices: from library.slicing_vae import SlicingAutoencoderKL sli_vae = SlicingAutoencoderKL( act_fn="silu", block_out_channels=(128, 256, 512, 512), down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"], in_channels=3, latent_channels=4, layers_per_block=2, norm_num_groups=32, out_channels=3, sample_size=512, up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], num_slices=args.vae_slices, ) sli_vae.load_state_dict(vae.state_dict()) # vaeのパラメータをコピーする vae = sli_vae del sli_vae vae.to(dtype).to(device) text_encoder.to(dtype).to(device) unet.to(dtype).to(device) if clip_model is not None: clip_model.to(dtype).to(device) if vgg16_model is not None: vgg16_model.to(dtype).to(device) # networkを組み込む if args.network_module: networks = [] network_default_muls = [] network_pre_calc = args.network_pre_calc for i, network_module in enumerate(args.network_module): print("import network module:", network_module) imported_module = importlib.import_module(network_module) network_mul = 1.0 if args.network_mul is None or len(args.network_mul) <= i else args.network_mul[i] network_default_muls.append(network_mul) net_kwargs = {} if args.network_args and i < len(args.network_args): network_args = args.network_args[i] # TODO escape special chars network_args = network_args.split(";") for net_arg in network_args: key, value = net_arg.split("=") net_kwargs[key] = value if args.network_weights and i < len(args.network_weights): network_weight = args.network_weights[i] print("load network weights from:", network_weight) if model_util.is_safetensors(network_weight) and args.network_show_meta: from safetensors.torch import safe_open with safe_open(network_weight, framework="pt") as f: metadata = f.metadata() if metadata is not None: print(f"metadata for: {network_weight}: {metadata}") network, weights_sd = imported_module.create_network_from_weights( network_mul, network_weight, vae, text_encoder, unet, for_inference=True, **net_kwargs ) else: raise ValueError("No weight. Weight is required.") if network is None: return mergeable = network.is_mergeable() if args.network_merge and not mergeable: print("network is not mergiable. ignore merge option.") if not args.network_merge or not mergeable: network.apply_to(text_encoder, unet) info = network.load_state_dict(weights_sd, False) # network.load_weightsを使うようにするとよい print(f"weights are loaded: {info}") if args.opt_channels_last: network.to(memory_format=torch.channels_last) network.to(dtype).to(device) if network_pre_calc: print("backup original weights") network.backup_weights() networks.append(network) else: network.merge_to(text_encoder, unet, weights_sd, dtype, device) else: networks = [] # upscalerの指定があれば取得する upscaler = None if args.highres_fix_upscaler: print("import upscaler module:", args.highres_fix_upscaler) imported_module = importlib.import_module(args.highres_fix_upscaler) us_kwargs = {} if args.highres_fix_upscaler_args: for net_arg in args.highres_fix_upscaler_args.split(";"): key, value = net_arg.split("=") us_kwargs[key] = value print("create upscaler") upscaler = imported_module.create_upscaler(**us_kwargs) upscaler.to(dtype).to(device) # ControlNetの処理 control_nets: List[ControlNetInfo] = [] if args.control_net_models: for i, model in enumerate(args.control_net_models): prep_type = None if not args.control_net_preps or len(args.control_net_preps) <= i else args.control_net_preps[i] weight = 1.0 if not args.control_net_weights or len(args.control_net_weights) <= i else args.control_net_weights[i] ratio = 1.0 if not args.control_net_ratios or len(args.control_net_ratios) <= i else args.control_net_ratios[i] ctrl_unet, ctrl_net = original_control_net.load_control_net(args.v2, unet, model) prep = original_control_net.load_preprocess(prep_type) control_nets.append(ControlNetInfo(ctrl_unet, ctrl_net, prep, weight, ratio)) if args.opt_channels_last: print(f"set optimizing: channels last") text_encoder.to(memory_format=torch.channels_last) vae.to(memory_format=torch.channels_last) unet.to(memory_format=torch.channels_last) if clip_model is not None: clip_model.to(memory_format=torch.channels_last) if networks: for network in networks: network.to(memory_format=torch.channels_last) if vgg16_model is not None: vgg16_model.to(memory_format=torch.channels_last) for cn in control_nets: cn.unet.to(memory_format=torch.channels_last) cn.net.to(memory_format=torch.channels_last) pipe = PipelineLike( device, vae, text_encoder, tokenizer, unet, scheduler, args.clip_skip, clip_model, args.clip_guidance_scale, args.clip_image_guidance_scale, vgg16_model, args.vgg16_guidance_scale, args.vgg16_guidance_layer, ) pipe.set_control_nets(control_nets) print("pipeline is ready.") if args.diffusers_xformers: pipe.enable_xformers_memory_efficient_attention() # Extended Textual Inversion および Textual Inversionを処理する if args.XTI_embeddings: diffusers.models.UNet2DConditionModel.forward = unet_forward_XTI diffusers.models.unet_2d_blocks.CrossAttnDownBlock2D.forward = downblock_forward_XTI diffusers.models.unet_2d_blocks.CrossAttnUpBlock2D.forward = upblock_forward_XTI if args.textual_inversion_embeddings: token_ids_embeds = [] for embeds_file in args.textual_inversion_embeddings: if model_util.is_safetensors(embeds_file): from safetensors.torch import load_file data = load_file(embeds_file) else: data = torch.load(embeds_file, map_location="cpu") if "string_to_param" in data: data = data["string_to_param"] embeds = next(iter(data.values())) if type(embeds) != torch.Tensor: raise ValueError(f"weight file does not contains Tensor / 重みファイルのデータがTensorではありません: {embeds_file}") num_vectors_per_token = embeds.size()[0] token_string = os.path.splitext(os.path.basename(embeds_file))[0] token_strings = [token_string] + [f"{token_string}{i+1}" for i in range(num_vectors_per_token - 1)] # add new word to tokenizer, count is num_vectors_per_token num_added_tokens = tokenizer.add_tokens(token_strings) assert ( num_added_tokens == num_vectors_per_token ), f"tokenizer has same word to token string (filename). please rename the file / 指定した名前(ファイル名)のトークンが既に存在します。ファイルをリネームしてください: {embeds_file}" token_ids = tokenizer.convert_tokens_to_ids(token_strings) print(f"Textual Inversion embeddings `{token_string}` loaded. Tokens are added: {token_ids}") assert ( min(token_ids) == token_ids[0] and token_ids[-1] == token_ids[0] + len(token_ids) - 1 ), f"token ids is not ordered" assert len(tokenizer) - 1 == token_ids[-1], f"token ids is not end of tokenize: {len(tokenizer)}" if num_vectors_per_token > 1: pipe.add_token_replacement(token_ids[0], token_ids) token_ids_embeds.append((token_ids, embeds)) text_encoder.resize_token_embeddings(len(tokenizer)) token_embeds = text_encoder.get_input_embeddings().weight.data for token_ids, embeds in token_ids_embeds: for token_id, embed in zip(token_ids, embeds): token_embeds[token_id] = embed if args.XTI_embeddings: XTI_layers = [ "IN01", "IN02", "IN04", "IN05", "IN07", "IN08", "MID", "OUT03", "OUT04", "OUT05", "OUT06", "OUT07", "OUT08", "OUT09", "OUT10", "OUT11", ] token_ids_embeds_XTI = [] for embeds_file in args.XTI_embeddings: if model_util.is_safetensors(embeds_file): from safetensors.torch import load_file data = load_file(embeds_file) else: data = torch.load(embeds_file, map_location="cpu") if set(data.keys()) != set(XTI_layers): raise ValueError("NOT XTI") embeds = torch.concat(list(data.values())) num_vectors_per_token = data["MID"].size()[0] token_string = os.path.splitext(os.path.basename(embeds_file))[0] token_strings = [token_string] + [f"{token_string}{i+1}" for i in range(num_vectors_per_token - 1)] # add new word to tokenizer, count is num_vectors_per_token num_added_tokens = tokenizer.add_tokens(token_strings) assert ( num_added_tokens == num_vectors_per_token ), f"tokenizer has same word to token string (filename). please rename the file / 指定した名前(ファイル名)のトークンが既に存在します。ファイルをリネームしてください: {embeds_file}" token_ids = tokenizer.convert_tokens_to_ids(token_strings) print(f"XTI embeddings `{token_string}` loaded. Tokens are added: {token_ids}") # if num_vectors_per_token > 1: pipe.add_token_replacement(token_ids[0], token_ids) token_strings_XTI = [] for layer_name in XTI_layers: token_strings_XTI += [f"{t}_{layer_name}" for t in token_strings] tokenizer.add_tokens(token_strings_XTI) token_ids_XTI = tokenizer.convert_tokens_to_ids(token_strings_XTI) token_ids_embeds_XTI.append((token_ids_XTI, embeds)) for t in token_ids: t_XTI_dic = {} for i, layer_name in enumerate(XTI_layers): t_XTI_dic[layer_name] = t + (i + 1) * num_added_tokens pipe.add_token_replacement_XTI(t, t_XTI_dic) text_encoder.resize_token_embeddings(len(tokenizer)) token_embeds = text_encoder.get_input_embeddings().weight.data for token_ids, embeds in token_ids_embeds_XTI: for token_id, embed in zip(token_ids, embeds): token_embeds[token_id] = embed # promptを取得する if args.from_file is not None: print(f"reading prompts from {args.from_file}") with open(args.from_file, "r", encoding="utf-8") as f: prompt_list = f.read().splitlines() prompt_list = [d for d in prompt_list if len(d.strip()) > 0] elif args.prompt is not None: prompt_list = [args.prompt] else: prompt_list = [] if args.interactive: args.n_iter = 1 # img2imgの前処理、画像の読み込みなど def load_images(path): if os.path.isfile(path): paths = [path] else: paths = ( glob.glob(os.path.join(path, "*.png")) + glob.glob(os.path.join(path, "*.jpg")) + glob.glob(os.path.join(path, "*.jpeg")) + glob.glob(os.path.join(path, "*.webp")) ) paths.sort() images = [] for p in paths: image = Image.open(p) if image.mode != "RGB": print(f"convert image to RGB from {image.mode}: {p}") image = image.convert("RGB") images.append(image) return images def resize_images(imgs, size): resized = [] for img in imgs: r_img = img.resize(size, Image.Resampling.LANCZOS) if hasattr(img, "filename"): # filename属性がない場合があるらしい r_img.filename = img.filename resized.append(r_img) return resized if args.image_path is not None: print(f"load image for img2img: {args.image_path}") init_images = load_images(args.image_path) assert len(init_images) > 0, f"No image / 画像がありません: {args.image_path}" print(f"loaded {len(init_images)} images for img2img") else: init_images = None if args.mask_path is not None: print(f"load mask for inpainting: {args.mask_path}") mask_images = load_images(args.mask_path) assert len(mask_images) > 0, f"No mask image / マスク画像がありません: {args.image_path}" print(f"loaded {len(mask_images)} mask images for inpainting") else: mask_images = None # promptがないとき、画像のPngInfoから取得する if init_images is not None and len(prompt_list) == 0 and not args.interactive: print("get prompts from images' meta data") for img in init_images: if "prompt" in img.text: prompt = img.text["prompt"] if "negative-prompt" in img.text: prompt += " --n " + img.text["negative-prompt"] prompt_list.append(prompt) # プロンプトと画像を一致させるため指定回数だけ繰り返す(画像を増幅する) l = [] for im in init_images: l.extend([im] * args.images_per_prompt) init_images = l if mask_images is not None: l = [] for im in mask_images: l.extend([im] * args.images_per_prompt) mask_images = l # 画像サイズにオプション指定があるときはリサイズする if args.W is not None and args.H is not None: # highres fix を考慮に入れる w, h = args.W, args.H if highres_fix: w = int(w * args.highres_fix_scale + 0.5) h = int(h * args.highres_fix_scale + 0.5) if init_images is not None: print(f"resize img2img source images to {w}*{h}") init_images = resize_images(init_images, (w, h)) if mask_images is not None: print(f"resize img2img mask images to {w}*{h}") mask_images = resize_images(mask_images, (w, h)) regional_network = False if networks and mask_images: # mask を領域情報として流用する、現在は一回のコマンド呼び出しで1枚だけ対応 regional_network = True print("use mask as region") size = None for i, network in enumerate(networks): if i < 3: np_mask = np.array(mask_images[0]) np_mask = np_mask[:, :, i] size = np_mask.shape else: np_mask = np.full(size, 255, dtype=np.uint8) mask = torch.from_numpy(np_mask.astype(np.float32) / 255.0) network.set_region(i, i == len(networks) - 1, mask) mask_images = None prev_image = None # for VGG16 guided if args.guide_image_path is not None: print(f"load image for CLIP/VGG16/ControlNet guidance: {args.guide_image_path}") guide_images = [] for p in args.guide_image_path: guide_images.extend(load_images(p)) print(f"loaded {len(guide_images)} guide images for guidance") if len(guide_images) == 0: print(f"No guide image, use previous generated image. / ガイド画像がありません。直前に生成した画像を使います: {args.image_path}") guide_images = None else: guide_images = None # seed指定時はseedを決めておく if args.seed is not None: # dynamic promptを使うと足りなくなる→images_per_promptを適当に大きくしておいてもらう random.seed(args.seed) predefined_seeds = [random.randint(0, 0x7FFFFFFF) for _ in range(args.n_iter * len(prompt_list) * args.images_per_prompt)] if len(predefined_seeds) == 1: predefined_seeds[0] = args.seed else: predefined_seeds = None # デフォルト画像サイズを設定する:img2imgではこれらの値は無視される(またはW*Hにリサイズ済み) if args.W is None: args.W = 512 if args.H is None: args.H = 512 # 画像生成のループ os.makedirs(args.outdir, exist_ok=True) max_embeddings_multiples = 1 if args.max_embeddings_multiples is None else args.max_embeddings_multiples for gen_iter in range(args.n_iter): print(f"iteration {gen_iter+1}/{args.n_iter}") iter_seed = random.randint(0, 0x7FFFFFFF) # shuffle prompt list if args.shuffle_prompts: random.shuffle(prompt_list) # バッチ処理の関数 def process_batch(batch: List[BatchData], highres_fix, highres_1st=False): batch_size = len(batch) # highres_fixの処理 if highres_fix and not highres_1st: # 1st stageのバッチを作成して呼び出す:サイズを小さくして呼び出す is_1st_latent = upscaler.support_latents() if upscaler else args.highres_fix_latents_upscaling print("process 1st stage") batch_1st = [] for _, base, ext in batch: width_1st = int(ext.width * args.highres_fix_scale + 0.5) height_1st = int(ext.height * args.highres_fix_scale + 0.5) width_1st = width_1st - width_1st % 32 height_1st = height_1st - height_1st % 32 strength_1st = ext.strength if args.highres_fix_strength is None else args.highres_fix_strength ext_1st = BatchDataExt( width_1st, height_1st, args.highres_fix_steps, ext.scale, ext.negative_scale, strength_1st, ext.network_muls, ext.num_sub_prompts, ) batch_1st.append(BatchData(is_1st_latent, base, ext_1st)) pipe.set_enable_control_net(True) # 1st stageではControlNetを有効にする images_1st = process_batch(batch_1st, True, True) # 2nd stageのバッチを作成して以下処理する print("process 2nd stage") width_2nd, height_2nd = batch[0].ext.width, batch[0].ext.height if upscaler: # upscalerを使って画像を拡大する lowreso_imgs = None if is_1st_latent else images_1st lowreso_latents = None if not is_1st_latent else images_1st # 戻り値はPIL.Image.Imageかtorch.Tensorのlatents batch_size = len(images_1st) vae_batch_size = ( batch_size if args.vae_batch_size is None else (max(1, int(batch_size * args.vae_batch_size)) if args.vae_batch_size < 1 else args.vae_batch_size) ) vae_batch_size = int(vae_batch_size) images_1st = upscaler.upscale( vae, lowreso_imgs, lowreso_latents, dtype, width_2nd, height_2nd, batch_size, vae_batch_size ) elif args.highres_fix_latents_upscaling: # latentを拡大する org_dtype = images_1st.dtype if images_1st.dtype == torch.bfloat16: images_1st = images_1st.to(torch.float) # interpolateがbf16をサポートしていない images_1st = torch.nn.functional.interpolate( images_1st, (batch[0].ext.height // 8, batch[0].ext.width // 8), mode="bilinear" ) # , antialias=True) images_1st = images_1st.to(org_dtype) else: # 画像をLANCZOSで拡大する images_1st = [image.resize((width_2nd, height_2nd), resample=PIL.Image.LANCZOS) for image in images_1st] batch_2nd = [] for i, (bd, image) in enumerate(zip(batch, images_1st)): bd_2nd = BatchData(False, BatchDataBase(*bd.base[0:3], bd.base.seed + 1, image, None, *bd.base[6:]), bd.ext) batch_2nd.append(bd_2nd) batch = batch_2nd if args.highres_fix_disable_control_net: pipe.set_enable_control_net(False) # オプション指定時、2nd stageではControlNetを無効にする # このバッチの情報を取り出す ( return_latents, (step_first, _, _, _, init_image, mask_image, _, guide_image), (width, height, steps, scale, negative_scale, strength, network_muls, num_sub_prompts), ) = batch[0] noise_shape = (LATENT_CHANNELS, height // DOWNSAMPLING_FACTOR, width // DOWNSAMPLING_FACTOR) prompts = [] negative_prompts = [] start_code = torch.zeros((batch_size, *noise_shape), device=device, dtype=dtype) noises = [ torch.zeros((batch_size, *noise_shape), device=device, dtype=dtype) for _ in range(steps * scheduler_num_noises_per_step) ] seeds = [] clip_prompts = [] if init_image is not None: # img2img? i2i_noises = torch.zeros((batch_size, *noise_shape), device=device, dtype=dtype) init_images = [] if mask_image is not None: mask_images = [] else: mask_images = None else: i2i_noises = None init_images = None mask_images = None if guide_image is not None: # CLIP image guided? guide_images = [] else: guide_images = None # バッチ内の位置に関わらず同じ乱数を使うためにここで乱数を生成しておく。あわせてimage/maskがbatch内で同一かチェックする all_images_are_same = True all_masks_are_same = True all_guide_images_are_same = True for i, (_, (_, prompt, negative_prompt, seed, init_image, mask_image, clip_prompt, guide_image), _) in enumerate(batch): prompts.append(prompt) negative_prompts.append(negative_prompt) seeds.append(seed) clip_prompts.append(clip_prompt) if init_image is not None: init_images.append(init_image) if i > 0 and all_images_are_same: all_images_are_same = init_images[-2] is init_image if mask_image is not None: mask_images.append(mask_image) if i > 0 and all_masks_are_same: all_masks_are_same = mask_images[-2] is mask_image if guide_image is not None: if type(guide_image) is list: guide_images.extend(guide_image) all_guide_images_are_same = False else: guide_images.append(guide_image) if i > 0 and all_guide_images_are_same: all_guide_images_are_same = guide_images[-2] is guide_image # make start code torch.manual_seed(seed) start_code[i] = torch.randn(noise_shape, device=device, dtype=dtype) # make each noises for j in range(steps * scheduler_num_noises_per_step): noises[j][i] = torch.randn(noise_shape, device=device, dtype=dtype) if i2i_noises is not None: # img2img noise i2i_noises[i] = torch.randn(noise_shape, device=device, dtype=dtype) noise_manager.reset_sampler_noises(noises) # すべての画像が同じなら1枚だけpipeに渡すことでpipe側で処理を高速化する if init_images is not None and all_images_are_same: init_images = init_images[0] if mask_images is not None and all_masks_are_same: mask_images = mask_images[0] if guide_images is not None and all_guide_images_are_same: guide_images = guide_images[0] # ControlNet使用時はguide imageをリサイズする if control_nets: # TODO resampleのメソッド guide_images = guide_images if type(guide_images) == list else [guide_images] guide_images = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in guide_images] if len(guide_images) == 1: guide_images = guide_images[0] # generate if networks: # 追加ネットワークの処理 shared = {} for n, m in zip(networks, network_muls if network_muls else network_default_muls): n.set_multiplier(m) if regional_network: n.set_current_generation(batch_size, num_sub_prompts, width, height, shared) if not regional_network and network_pre_calc: for n in networks: n.restore_weights() for n in networks: n.pre_calculation() print("pre-calculation... done") images = pipe( prompts, negative_prompts, init_images, mask_images, height, width, steps, scale, negative_scale, strength, latents=start_code, output_type="pil", max_embeddings_multiples=max_embeddings_multiples, img2img_noise=i2i_noises, vae_batch_size=args.vae_batch_size, return_latents=return_latents, clip_prompts=clip_prompts, clip_guide_images=guide_images, )[0] if highres_1st and not args.highres_fix_save_1st: # return images or latents return images # save image highres_prefix = ("0" if highres_1st else "1") if highres_fix else "" ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime()) for i, (image, prompt, negative_prompts, seed, clip_prompt) in enumerate( zip(images, prompts, negative_prompts, seeds, clip_prompts) ): if highres_fix: seed -= 1 # record original seed metadata = PngInfo() metadata.add_text("prompt", prompt) metadata.add_text("seed", str(seed)) metadata.add_text("sampler", args.sampler) metadata.add_text("steps", str(steps)) metadata.add_text("scale", str(scale)) if negative_prompt is not None: metadata.add_text("negative-prompt", negative_prompt) if negative_scale is not None: metadata.add_text("negative-scale", str(negative_scale)) if clip_prompt is not None: metadata.add_text("clip-prompt", clip_prompt) if args.use_original_file_name and init_images is not None: if type(init_images) is list: fln = os.path.splitext(os.path.basename(init_images[i % len(init_images)].filename))[0] + ".png" else: fln = os.path.splitext(os.path.basename(init_images.filename))[0] + ".png" elif args.sequential_file_name: fln = f"im_{highres_prefix}{step_first + i + 1:06d}.png" else: fln = f"im_{ts_str}_{highres_prefix}{i:03d}_{seed}.png" image.save(os.path.join(args.outdir, fln), pnginfo=metadata) if not args.no_preview and not highres_1st and args.interactive: try: import cv2 for prompt, image in zip(prompts, images): cv2.imshow(prompt[:128], np.array(image)[:, :, ::-1]) # プロンプトが長いと死ぬ cv2.waitKey() cv2.destroyAllWindows() except ImportError: print("opencv-python is not installed, cannot preview / opencv-pythonがインストールされていないためプレビューできません") return images # 画像生成のプロンプトが一周するまでのループ prompt_index = 0 global_step = 0 batch_data = [] while args.interactive or prompt_index < len(prompt_list): if len(prompt_list) == 0: # interactive valid = False while not valid: print("\nType prompt:") try: raw_prompt = input() except EOFError: break valid = len(raw_prompt.strip().split(" --")[0].strip()) > 0 if not valid: # EOF, end app break else: raw_prompt = prompt_list[prompt_index] # sd-dynamic-prompts like variants: # count is 1 (not dynamic) or images_per_prompt (no enumeration) or arbitrary (enumeration) raw_prompts = handle_dynamic_prompt_variants(raw_prompt, args.images_per_prompt) # repeat prompt for pi in range(args.images_per_prompt if len(raw_prompts) == 1 else len(raw_prompts)): raw_prompt = raw_prompts[pi] if len(raw_prompts) > 1 else raw_prompts[0] if pi == 0 or len(raw_prompts) > 1: # parse prompt: if prompt is not changed, skip parsing width = args.W height = args.H scale = args.scale negative_scale = args.negative_scale steps = args.steps seed = None seeds = None strength = 0.8 if args.strength is None else args.strength negative_prompt = "" clip_prompt = None network_muls = None prompt_args = raw_prompt.strip().split(" --") prompt = prompt_args[0] print(f"prompt {prompt_index+1}/{len(prompt_list)}: {prompt}") for parg in prompt_args[1:]: try: m = re.match(r"w (\d+)", parg, re.IGNORECASE) if m: width = int(m.group(1)) print(f"width: {width}") continue m = re.match(r"h (\d+)", parg, re.IGNORECASE) if m: height = int(m.group(1)) print(f"height: {height}") continue m = re.match(r"s (\d+)", parg, re.IGNORECASE) if m: # steps steps = max(1, min(1000, int(m.group(1)))) print(f"steps: {steps}") continue m = re.match(r"d ([\d,]+)", parg, re.IGNORECASE) if m: # seed seeds = [int(d) for d in m.group(1).split(",")] print(f"seeds: {seeds}") continue m = re.match(r"l ([\d\.]+)", parg, re.IGNORECASE) if m: # scale scale = float(m.group(1)) print(f"scale: {scale}") continue m = re.match(r"nl ([\d\.]+|none|None)", parg, re.IGNORECASE) if m: # negative scale if m.group(1).lower() == "none": negative_scale = None else: negative_scale = float(m.group(1)) print(f"negative scale: {negative_scale}") continue m = re.match(r"t ([\d\.]+)", parg, re.IGNORECASE) if m: # strength strength = float(m.group(1)) print(f"strength: {strength}") continue m = re.match(r"n (.+)", parg, re.IGNORECASE) if m: # negative prompt negative_prompt = m.group(1) print(f"negative prompt: {negative_prompt}") continue m = re.match(r"c (.+)", parg, re.IGNORECASE) if m: # clip prompt clip_prompt = m.group(1) print(f"clip prompt: {clip_prompt}") continue m = re.match(r"am ([\d\.\-,]+)", parg, re.IGNORECASE) if m: # network multiplies network_muls = [float(v) for v in m.group(1).split(",")] while len(network_muls) < len(networks): network_muls.append(network_muls[-1]) print(f"network mul: {network_muls}") continue except ValueError as ex: print(f"Exception in parsing / 解析エラー: {parg}") print(ex) # prepare seed if seeds is not None: # given in prompt # 数が足りないなら前のをそのまま使う if len(seeds) > 0: seed = seeds.pop(0) else: if predefined_seeds is not None: if len(predefined_seeds) > 0: seed = predefined_seeds.pop(0) else: print("predefined seeds are exhausted") seed = None elif args.iter_same_seed: seeds = iter_seed else: seed = None # 前のを消す if seed is None: seed = random.randint(0, 0x7FFFFFFF) if args.interactive: print(f"seed: {seed}") # prepare init image, guide image and mask init_image = mask_image = guide_image = None # 同一イメージを使うとき、本当はlatentに変換しておくと無駄がないが面倒なのでとりあえず毎回処理する if init_images is not None: init_image = init_images[global_step % len(init_images)] # img2imgの場合は、基本的に元画像のサイズで生成する。highres fixの場合はargs.W, args.Hとscaleに従いリサイズ済みなので無視する # 32単位に丸めたやつにresizeされるので踏襲する if not highres_fix: width, height = init_image.size width = width - width % 32 height = height - height % 32 if width != init_image.size[0] or height != init_image.size[1]: print( f"img2img image size is not divisible by 32 so aspect ratio is changed / img2imgの画像サイズが32で割り切れないためリサイズされます。画像が歪みます" ) if mask_images is not None: mask_image = mask_images[global_step % len(mask_images)] if guide_images is not None: if control_nets: # 複数件の場合あり c = len(control_nets) p = global_step % (len(guide_images) // c) guide_image = guide_images[p * c : p * c + c] else: guide_image = guide_images[global_step % len(guide_images)] elif args.clip_image_guidance_scale > 0 or args.vgg16_guidance_scale > 0: if prev_image is None: print("Generate 1st image without guide image.") else: print("Use previous image as guide image.") guide_image = prev_image if regional_network: num_sub_prompts = len(prompt.split(" AND ")) assert ( len(networks) <= num_sub_prompts ), "Number of networks must be less than or equal to number of sub prompts." else: num_sub_prompts = None b1 = BatchData( False, BatchDataBase(global_step, prompt, negative_prompt, seed, init_image, mask_image, clip_prompt, guide_image), BatchDataExt( width, height, steps, scale, negative_scale, strength, tuple(network_muls) if network_muls else None, num_sub_prompts, ), ) if len(batch_data) > 0 and batch_data[-1].ext != b1.ext: # バッチ分割必要? process_batch(batch_data, highres_fix) batch_data.clear() batch_data.append(b1) if len(batch_data) == args.batch_size: prev_image = process_batch(batch_data, highres_fix)[0] batch_data.clear() global_step += 1 prompt_index += 1 if len(batch_data) > 0: process_batch(batch_data, highres_fix) batch_data.clear() print("done!") def setup_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() parser.add_argument("--v2", action="store_true", help="load Stable Diffusion v2.0 model / Stable Diffusion 2.0のモデルを読み込む") parser.add_argument( "--v_parameterization", action="store_true", help="enable v-parameterization training / v-parameterization学習を有効にする" ) parser.add_argument("--prompt", type=str, default=None, help="prompt / プロンプト") parser.add_argument( "--from_file", type=str, default=None, help="if specified, load prompts from this file / 指定時はプロンプトをファイルから読み込む" ) parser.add_argument( "--interactive", action="store_true", help="interactive mode (generates one image) / 対話モード(生成される画像は1枚になります)" ) parser.add_argument( "--no_preview", action="store_true", help="do not show generated image in interactive mode / 対話モードで画像を表示しない" ) parser.add_argument( "--image_path", type=str, default=None, help="image to inpaint or to generate from / img2imgまたはinpaintを行う元画像" ) parser.add_argument("--mask_path", type=str, default=None, help="mask in inpainting / inpaint時のマスク") parser.add_argument("--strength", type=float, default=None, help="img2img strength / img2img時のstrength") parser.add_argument("--images_per_prompt", type=int, default=1, help="number of images per prompt / プロンプトあたりの出力枚数") parser.add_argument("--outdir", type=str, default="outputs", help="dir to write results to / 生成画像の出力先") parser.add_argument("--sequential_file_name", action="store_true", help="sequential output file name / 生成画像のファイル名を連番にする") parser.add_argument( "--use_original_file_name", action="store_true", help="prepend original file name in img2img / img2imgで元画像のファイル名を生成画像のファイル名の先頭に付ける", ) # parser.add_argument("--ddim_eta", type=float, default=0.0, help="ddim eta (eta=0.0 corresponds to deterministic sampling", ) parser.add_argument("--n_iter", type=int, default=1, help="sample this often / 繰り返し回数") parser.add_argument("--H", type=int, default=None, help="image height, in pixel space / 生成画像高さ") parser.add_argument("--W", type=int, default=None, help="image width, in pixel space / 生成画像幅") parser.add_argument("--batch_size", type=int, default=1, help="batch size / バッチサイズ") parser.add_argument( "--vae_batch_size", type=float, default=None, help="batch size for VAE, < 1.0 for ratio / VAE処理時のバッチサイズ、1未満の値の場合は通常バッチサイズの比率", ) parser.add_argument( "--vae_slices", type=int, default=None, help="number of slices to split image into for VAE to reduce VRAM usage, None for no splitting (default), slower if specified. 16 or 32 recommended / VAE処理時にVRAM使用量削減のため画像を分割するスライス数、Noneの場合は分割しない(デフォルト)、指定すると遅くなる。16か32程度を推奨", ) parser.add_argument("--steps", type=int, default=50, help="number of ddim sampling steps / サンプリングステップ数") parser.add_argument( "--sampler", type=str, default="ddim", choices=[ "ddim", "pndm", "lms", "euler", "euler_a", "heun", "dpm_2", "dpm_2_a", "dpmsolver", "dpmsolver++", "dpmsingle", "k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", ], help=f"sampler (scheduler) type / サンプラー(スケジューラ)の種類", ) parser.add_argument( "--scale", type=float, default=7.5, help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty)) / guidance scale", ) parser.add_argument("--ckpt", type=str, default=None, help="path to checkpoint of model / モデルのcheckpointファイルまたはディレクトリ") parser.add_argument( "--vae", type=str, default=None, help="path to checkpoint of vae to replace / VAEを入れ替える場合、VAEのcheckpointファイルまたはディレクトリ" ) parser.add_argument( "--tokenizer_cache_dir", type=str, default=None, help="directory for caching Tokenizer (for offline training) / Tokenizerをキャッシュするディレクトリ(ネット接続なしでの学習のため)", ) # parser.add_argument("--replace_clip_l14_336", action='store_true', # help="Replace CLIP (Text Encoder) to l/14@336 / CLIP(Text Encoder)をl/14@336に入れ替える") parser.add_argument( "--seed", type=int, default=None, help="seed, or seed of seeds in multiple generation / 1枚生成時のseed、または複数枚生成時の乱数seedを決めるためのseed", ) parser.add_argument( "--iter_same_seed", action="store_true", help="use same seed for all prompts in iteration if no seed specified / 乱数seedの指定がないとき繰り返し内はすべて同じseedを使う(プロンプト間の差異の比較用)", ) parser.add_argument( "--shuffle_prompts", action="store_true", help="shuffle prompts in iteration / 繰り返し内のプロンプトをシャッフルする", ) parser.add_argument("--fp16", action="store_true", help="use fp16 / fp16を指定し省メモリ化する") parser.add_argument("--bf16", action="store_true", help="use bfloat16 / bfloat16を指定し省メモリ化する") parser.add_argument("--xformers", action="store_true", help="use xformers / xformersを使用し高速化する") parser.add_argument("--sdpa", action="store_true", help="use sdpa in PyTorch 2 / sdpa") parser.add_argument( "--diffusers_xformers", action="store_true", help="use xformers by diffusers (Hypernetworks doesn't work) / Diffusersでxformersを使用する(Hypernetwork利用不可)", ) parser.add_argument( "--opt_channels_last", action="store_true", help="set channels last option to model / モデルにchannels lastを指定し最適化する" ) parser.add_argument( "--network_module", type=str, default=None, nargs="*", help="additional network module to use / 追加ネットワークを使う時そのモジュール名" ) parser.add_argument( "--network_weights", type=str, default=None, nargs="*", help="additional network weights to load / 追加ネットワークの重み" ) parser.add_argument("--network_mul", type=float, default=None, nargs="*", help="additional network multiplier / 追加ネットワークの効果の倍率") parser.add_argument( "--network_args", type=str, default=None, nargs="*", help="additional argmuments for network (key=value) / ネットワークへの追加の引数" ) parser.add_argument("--network_show_meta", action="store_true", help="show metadata of network model / ネットワークモデルのメタデータを表示する") parser.add_argument("--network_merge", action="store_true", help="merge network weights to original model / ネットワークの重みをマージする") parser.add_argument( "--network_pre_calc", action="store_true", help="pre-calculate network for generation / ネットワークのあらかじめ計算して生成する" ) parser.add_argument( "--textual_inversion_embeddings", type=str, default=None, nargs="*", help="Embeddings files of Textual Inversion / Textual Inversionのembeddings", ) parser.add_argument( "--XTI_embeddings", type=str, default=None, nargs="*", help="Embeddings files of Extended Textual Inversion / Extended Textual Inversionのembeddings", ) parser.add_argument("--clip_skip", type=int, default=None, help="layer number from bottom to use in CLIP / CLIPの後ろからn層目の出力を使う") parser.add_argument( "--max_embeddings_multiples", type=int, default=None, help="max embeding multiples, max token length is 75 * multiples / トークン長をデフォルトの何倍とするか 75*この値 がトークン長となる", ) parser.add_argument( "--clip_guidance_scale", type=float, default=0.0, help="enable CLIP guided SD, scale for guidance (DDIM, PNDM, LMS samplers only) / CLIP guided SDを有効にしてこのscaleを適用する(サンプラーはDDIM、PNDM、LMSのみ)", ) parser.add_argument( "--clip_image_guidance_scale", type=float, default=0.0, help="enable CLIP guided SD by image, scale for guidance / 画像によるCLIP guided SDを有効にしてこのscaleを適用する", ) parser.add_argument( "--vgg16_guidance_scale", type=float, default=0.0, help="enable VGG16 guided SD by image, scale for guidance / 画像によるVGG16 guided SDを有効にしてこのscaleを適用する", ) parser.add_argument( "--vgg16_guidance_layer", type=int, default=20, help="layer of VGG16 to calculate contents guide (1~30, 20 for conv4_2) / VGG16のcontents guideに使うレイヤー番号 (1~30、20はconv4_2)", ) parser.add_argument( "--guide_image_path", type=str, default=None, nargs="*", help="image to CLIP guidance / CLIP guided SDでガイドに使う画像" ) parser.add_argument( "--highres_fix_scale", type=float, default=None, help="enable highres fix, reso scale for 1st stage / highres fixを有効にして最初の解像度をこのscaleにする", ) parser.add_argument( "--highres_fix_steps", type=int, default=28, help="1st stage steps for highres fix / highres fixの最初のステージのステップ数" ) parser.add_argument( "--highres_fix_strength", type=float, default=None, help="1st stage img2img strength for highres fix / highres fixの最初のステージのimg2img時のstrength、省略時はstrengthと同じ", ) parser.add_argument( "--highres_fix_save_1st", action="store_true", help="save 1st stage images for highres fix / highres fixの最初のステージの画像を保存する" ) parser.add_argument( "--highres_fix_latents_upscaling", action="store_true", help="use latents upscaling for highres fix / highres fixでlatentで拡大する", ) parser.add_argument( "--highres_fix_upscaler", type=str, default=None, help="upscaler module for highres fix / highres fixで使うupscalerのモジュール名" ) parser.add_argument( "--highres_fix_upscaler_args", type=str, default=None, help="additional argmuments for upscaler (key=value) / upscalerへの追加の引数", ) parser.add_argument( "--highres_fix_disable_control_net", action="store_true", help="disable ControlNet for highres fix / highres fixでControlNetを使わない", ) parser.add_argument( "--negative_scale", type=float, default=None, help="set another guidance scale for negative prompt / ネガティブプロンプトのscaleを指定する" ) parser.add_argument( "--control_net_models", type=str, default=None, nargs="*", help="ControlNet models to use / 使用するControlNetのモデル名" ) parser.add_argument( "--control_net_preps", type=str, default=None, nargs="*", help="ControlNet preprocess to use / 使用するControlNetのプリプロセス名" ) parser.add_argument("--control_net_weights", type=float, default=None, nargs="*", help="ControlNet weights / ControlNetの重み") parser.add_argument( "--control_net_ratios", type=float, default=None, nargs="*", help="ControlNet guidance ratio for steps / ControlNetでガイドするステップ比率", ) # parser.add_argument( # "--control_net_image_path", type=str, default=None, nargs="*", help="image for ControlNet guidance / ControlNetでガイドに使う画像" # ) return parser if __name__ == "__main__": parser = setup_parser() args = parser.parse_args() main(args)