import gradio as gr import numpy as np import random import torch from diffusers import StableDiffusion3Pipeline import spaces repo = "stabilityai/stable-diffusion-3-medium-diffusers" if torch.cuda.is_available(): pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to("cuda") else: pipe = StableDiffusion3Pipeline.from_pretrained(repo) max_seed = np.iinfo(np.int32).max max_image_size = 1344 examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 580px; } """ @spaces.GPU def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, max_seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=torch.Generator().manual_seed(seed) ).images[0] return image, seed with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# Demo [Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium)") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative Prompt", max_lines=1, placeholder="Enter a negative prompt", ) seed = gr.Slider( label="Seed", minimum=0, maximum=max_seed, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=max_image_size, step=64, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=max_image_size, step=64, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=5, ) gr.Examples( examples=examples, inputs=[prompt] ) gr.on( triggers=[run_button.click, prompt.submit, negative_prompt.submit], fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed] ) demo.launch()