import gradio as gr import pandas as pd import os import requests OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") SEVER_IP = os.environ.get("SEVER_IP") def get_total_number_of_products(): response = requests.get(f'{SEVER_IP}/api/total_number_of_products/') if response.status_code == 200: return response.json()['total_number_of_products'] else: return "Error fetching total number of products" def search_products(product_name): response = requests.get(f'{SEVER_IP}/api/search_products/', params={'name': product_name}) if response.status_code == 200: return pd.DataFrame(response.json()) else: return pd.DataFrame([]) # Return an empty DataFrame in case of an error def get_product_details_by_id(product_id): response = requests.get(f'{SEVER_IP}/api/product_details/{product_id}/') if response.status_code == 200: return response.json() # Returns the product details as a dictionary else: return {"error": f"Product with ID {product_id} not found or error occurred."} def sample_fun(voice_input, prodcut_id): print(prodcut_id) return with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.pink)) as demo: with gr.Tab("Add Your Image"): voice_input = gr.Audio(label="Upload Audio") prodcut_id = gr.Textbox(label="Enter Product ID") with gr.Row(): submit_button_tab_1 = gr.Button("Start") with gr.Tab("Search Catalog"): with gr.Row(): total_no_of_products = gr.Textbox(value=str(get_total_number_of_products()),label="Total Products") with gr.Row(): embbed_text_search = gr.Textbox(label="Enter Product Name") submit_button_tab_4 = gr.Button("Start") dataframe_output_tab_4 = gr.Dataframe(headers=['id', 'barcode', 'brand', 'sub_brand', 'manufactured_by', 'product_name', 'weight', 'variant', 'net_content', 'price', 'parent_category', 'child_category', 'sub_child_category', 'images_paths', 'description', 'quantity', 'promotion_on_the_pack', 'type_of_packaging', 'mrp']) submit_button_tab_1.click(fn=sample_fun,inputs=[voice_input,prodcut_id]) submit_button_tab_4.click(fn=search_products,inputs=[embbed_text_search] ,outputs= dataframe_output_tab_4) demo.launch()