import gradio as gr import pandas as pd from transformers import pipeline from load_models import models_and_tokenizers, models_checkpoints import spaces choice = {"ModelA": "", "ModelB": ""} dff = pd.read_csv("models.csv") dff.to_html("tab.html") def refreshfn() -> gr.HTML: df = pd.read_csv("models.csv") df.to_html("tab.html") f = open("tab.html") content = f.read() f.close() t = gr.HTML(content) return t def rewrite_csv_ordered_by_winning_rate(csv_path): # Read the input CSV df = pd.read_csv(csv_path) # Sort the DataFrame by WINNING_RATE in descending order df_sorted = df.sort_values(by="WINNING_RATE", ascending=False) # Save the sorted DataFrame to a new CSV file df_sorted.to_csv(csv_path, index=False) @spaces.GPU(duration=200) def run_inference(pipeline, prompt): response = pipeline(prompt) bot_message = response[0]["generated_text"] return bot_message def modelA_button(): global choice df = pd.read_csv("models.csv") df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"] += 1 df.loc[df["MODEL"] == choice["ModelA"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelA"], "MATCHES_PLAYED"] df.to_csv("models.csv") rewrite_csv_ordered_by_winning_rate("models.csv") def modelB_button(): global choice df = pd.read_csv("models.csv") df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"] += 1 df.loc[df["MODEL"] == choice["ModelB"], "WINNING_RATE"] = df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_WON"]/df.loc[df["MODEL"] == choice["ModelB"], "MATCHES_PLAYED"] df.to_csv("models.csv") rewrite_csv_ordered_by_winning_rate("models.csv") def reply(modelA, modelB, prompt): global choice choice["ModelA"] = modelA choice["ModelB"] = modelB df = pd.read_csv("models.csv") df.loc[df["MODEL"] == modelA, "MATCHES_PLAYED"] += 1 df.loc[df["MODEL"] == modelB, "MATCHES_PLAYED"] += 1 df.to_csv("models.csv", index=False) pipeA = pipeline("text-generation", model=models_and_tokenizers[modelA][0], tokenizer=models_and_tokenizers[modelA][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device="cuda") pipeB = pipeline("text-generation", model=models_and_tokenizers[modelB][0], tokenizer=models_and_tokenizers[modelB][1], max_new_tokens=512, repetition_penalty=1.5, temperature=0.5, device="cuda") responseA = run_inference(pipeA, prompt) responseB = run_inference(pipeB, prompt) return responseA, responseB modelA_dropdown = gr.Dropdown(models_checkpoints, label="Model A", info="Choose the first model for the battle!") modelB_dropdown = gr.Dropdown(models_checkpoints, label="Model B", info="Choose the second model for the battle!") prompt_textbox = gr.Textbox(label="Prompt", value="Is pineapple pizza sacrilegious?") demo0 = gr.Interface(fn=reply, inputs=[modelA_dropdown, modelB_dropdown, prompt_textbox], outputs=[gr.Markdown(label="Model A response"), gr.Markdown(label="Model B response")]) with gr.Blocks() as demo1: iface = demo0 btnA = gr.Button("Vote for Model A!") btnB = gr.Button("Vote for Model B!") btnA.click(modelA_button, inputs=None, outputs=None) btnB.click(modelB_button, inputs=None, outputs=None) with gr.Blocks() as demo2: f = open("tab.html") content = f.read() f.close() t = gr.HTML(content) btn = gr.Button("Refresh") btn.click(fn=refreshfn, inputs=None, outputs=t) demo = gr.TabbedInterface([demo1, demo2], ["Chat Arena", "Leaderboard"]) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)