import gradio as gr from gradio_client import Client from qdrant_client import QdrantClient from load_encoder import encoder from utils import NeuralSearcher import spaces import os mytheme = gr.Theme.from_hub("JohnSmith9982/small_and_pretty") collection_name = os.getenv("QDRANT_COLLECTION") QDRANT_API_KEY = os.getenv("QDRANT_API") QDRANT_URL = os.getenv("QDRANT_URL") qdrant_client = QdrantClient( url=QDRANT_URL, api_key=QDRANT_API_KEY, ) api_client = Client("eswardivi/Phi-3-mini-128k-instruct") @spaces.GPU(duration=120) def reply(message, history): global encoder global api_client global qdrant_client txt2txt = NeuralSearcher(collection_name, qdrant_client, encoder) context = txt2txt.search(message) to_phi = f"Instructions: you are a useful assistant focused on providing valuable content on Climate-related Financial Disclosures; Context: {context}; User prompt: {message}" response = api_client.predict( to_phi, # str in 'Message' Textbox component 0.2, # float (numeric value between 0 and 1) in 'Temperature' Slider component True, # bool in 'Sampling' Checkbox component 512, # float (numeric value between 128 and 4096) in 'Max new tokens' Slider component api_name="/chat" ) return response demo = gr.ChatInterface(fn=reply, title="Climate-related Financial Disclosures Counselor", theme=mytheme) demo.launch(server_name="0.0.0.0", share=False)