from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig #model_name = "ibm-granite/granite-3.2-8b-instruct" # #for bits in [4, 8]: # tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.2-8b-instruct") # # # gptq_config = GPTQConfig(bits=bits, tokenizer=tokenizer) # # quantized_model = AutoModelForCausalLM.from_pretrained("ibm-granite/granite-3.2-8b-instruct", device_map="auto", quantization_config=gptq_config) # # quantized_model.save_pretrained(f"ai-i9p/{model_name.split('/')[-1]}-GPTQ-Int{bits}") # tokenizer.save_pretrained(f"ai-i9p/{model_name.split('/')[-1]}-GPTQ-Int{bits}") # # quantized_model.to("cpu") # quantized_model.save_pretrained(f"ai-i9p/{model_name.split('/')[-1]}-GPTQ-Int{bits}") from awq import AutoAWQForCausalLM from transformers import AutoTokenizer model_path = 'Qwen/Qwen2.5-14B-Instruct' quant_path = 'Qwen2.5-14B-Instruct-awq' quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" } # Load model model = AutoAWQForCausalLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Quantize model.quantize(tokenizer, quant_config=quant_config) # Save quantized model model.save_quantized(quant_path) tokenizer.save_pretrained(quant_path) print(f'Model is quantized and saved at "{quant_path}"')