import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch from PIL import Image import re # Importando o módulo de expressões regulares import requests from io import BytesIO # Carregar o modelo Qwen-VL e o tokenizer tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL",load_in_4bit=True, device_map="auto", trust_remote_code=True).eval() def generate_predictions(image_input, text_input): # Inverter a imagem para corrigir o negativo user_image_path = "/tmp/user_input_test_image.jpg" Image.fromarray((255 - (image_input * 255).astype('uint8'))).save(user_image_path) # Preparar as entradas query = tokenizer.from_list_format([ {'image': user_image_path}, {'text': text_input}, ]) inputs = tokenizer(query, return_tensors='pt') inputs = inputs.to(model.device) # Gerar a legenda pred = model.generate(**inputs) full_response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False) # Remover o texto de input e outras partes indesejadas da resposta completa frontend_response = re.sub(r'Picture \d+:|<.*?>|\/tmp\/.*\.jpg', '', full_response).replace(text_input, '').strip() # Desenhar caixas delimitadoras, se houver image_with_boxes = tokenizer.draw_bbox_on_latest_picture(full_response) # Salvar e recarregar a imagem para garantir que seja uma imagem PIL if image_with_boxes: temp_path = "/tmp/image_with_boxes.jpg" image_with_boxes.save(temp_path) image_with_boxes = Image.open(temp_path) return image_with_boxes, frontend_response # Retornando a resposta formatada para o frontend # Criar interface Gradio # Create Gradio interface iface = gr.Interface( fn=generate_predictions, inputs=[ gr.inputs.Image(label="Image Input"), gr.inputs.Textbox(default="Generate a caption for that image with grounding:", label="Prompt") ], outputs=[ gr.outputs.Image(type='pil', label="Image"), # Explicitly set type to 'pil' gr.outputs.Textbox(label="Generated") ], title="Qwen-VL Demonstration", description = """ ## Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud **Space by [@Artificialguybr](https://twitter.com/artificialguybr)** ### Key Features: - **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA. - **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation. - **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding. """, ) iface.launch(share=True)