Spaces:
Build error
Build error
File size: 2,446 Bytes
5038429 32f13d0 5038429 dc2ea44 101c1f1 5038429 32f13d0 5038429 3f49fe4 32f13d0 dc2ea44 5038429 3f49fe4 32f13d0 5038429 3f49fe4 5038429 3f49fe4 32f13d0 5038429 3f49fe4 32f13d0 3f49fe4 32f13d0 3f49fe4 5038429 32f13d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from PIL import Image
import re
import requests
from io import BytesIO
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat-Int4", device_map="auto", trust_remote_code=True).eval()
def generate_predictions(image_input, text_input, with_grounding):
user_image_path = "/tmp/user_input_test_image.jpg"
Image.fromarray((255 - (image_input * 255).astype('uint8'))).save(user_image_path)
if with_grounding == "Yes":
text_input += " with grounding"
query = tokenizer.from_list_format([
{'image': user_image_path},
{'text': text_input},
])
inputs = tokenizer(query, return_tensors='pt')
inputs = inputs.to(model.device)
pred = model.generate(**inputs)
full_response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
frontend_response = re.sub(r'Picture \d+:|<.*?>|\/tmp\/.*\.jpg', '', full_response).replace(text_input, '').strip()
print("Generated Caption:", frontend_response) # Debugging line
image_with_boxes = tokenizer.draw_bbox_on_latest_picture(full_response)
if image_with_boxes:
temp_path = "/tmp/image_with_boxes.jpg"
image_with_boxes.save(temp_path)
image_with_boxes = Image.open(temp_path)
return image_with_boxes, frontend_response
iface = gr.Interface(
fn=generate_predictions,
inputs=[
gr.inputs.Image(label="Image Input"),
gr.inputs.Textbox(default="Generate a caption for that image:", label="Prompt"),
gr.inputs.Radio(["No", "Yes"], label="With Grounding", default="No")
],
outputs=[
gr.outputs.Image(type='pil', label="Image"),
gr.outputs.Textbox(label="Generated")
],
title="Qwen-VL Demonstration",
description = """
## Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud
**Space by [@Artificialguybr](https://twitter.com/artificialguybr)**
### Key Features:
- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA.
- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation.
- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding.
""",
)
iface.launch()
|