artificialguybr commited on
Commit
b79f8d4
·
1 Parent(s): 72d1247

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -13
app.py CHANGED
@@ -1,30 +1,36 @@
1
  import gradio as gr
2
  import openai
3
  import json
4
- import requests
5
- from bs4 import BeautifulSoup
6
  from graphviz import Digraph
7
  import base64
8
  from io import BytesIO
9
  from PIL import Image
10
 
11
  def generate_knowledge_graph(api_key, user_input):
 
12
  openai.api_key = api_key
13
 
14
- completion = openai.ChatCompletion.create(
15
- model="gpt-3.5-turbo-16k",
16
- messages=[
17
- {
18
- "role": "user",
19
- "content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
20
- }
21
- ],
22
- function_call={"name": "knowledge_graph"},
23
  )
24
 
25
- response_data = completion.choices[0]["message"]["function_call"]["arguments"]
26
- response_dict = json.loads(response_data)
 
27
 
 
 
 
 
 
 
 
 
 
 
28
  dot = Digraph(comment="Knowledge Graph")
29
 
30
  # Add nodes to the graph
@@ -36,13 +42,16 @@ def generate_knowledge_graph(api_key, user_input):
36
  dot.edge(edge["from"], edge["to"], label=edge["relationship"])
37
 
38
  # Render to PNG format
 
39
  dot.format = "png"
40
  dot.render(filename="knowledge_graph", cleanup=True)
41
 
42
  # Convert PNG to base64 to display in Gradio
 
43
  with open("knowledge_graph.png", "rb") as img_file:
44
  img_base64 = base64.b64encode(img_file.read()).decode()
45
 
 
46
  return f"data:image/png;base64,{img_base64}"
47
 
48
  iface = gr.Interface(
@@ -55,4 +64,5 @@ iface = gr.Interface(
55
  live=False
56
  )
57
 
 
58
  iface.launch()
 
1
  import gradio as gr
2
  import openai
3
  import json
 
 
4
  from graphviz import Digraph
5
  import base64
6
  from io import BytesIO
7
  from PIL import Image
8
 
9
  def generate_knowledge_graph(api_key, user_input):
10
+ print("Setting OpenAI API key...")
11
  openai.api_key = api_key
12
 
13
+ print("Making API call to OpenAI...")
14
+ completion = openai.Completion.create(
15
+ engine="text-davinci-002",
16
+ prompt=f"Help me understand the following by describing it as a detailed knowledge graph: {user_input}",
17
+ max_tokens=100
 
 
 
 
18
  )
19
 
20
+ print("Received response from OpenAI.")
21
+ response_data = completion.choices[0].text
22
+ print(f"Response data: {response_data}")
23
 
24
+ # For demonstration, let's assume the response_data is a JSON string that can be converted to a dictionary.
25
+ # You'll need to write code to interpret the text-based response to generate this dictionary.
26
+ print("Converting response to JSON...")
27
+ try:
28
+ response_dict = json.loads(response_data)
29
+ except json.JSONDecodeError:
30
+ print("Failed to decode JSON. Using empty dictionary as a fallback.")
31
+ response_dict = {}
32
+
33
+ print("Generating knowledge graph using Graphviz...")
34
  dot = Digraph(comment="Knowledge Graph")
35
 
36
  # Add nodes to the graph
 
42
  dot.edge(edge["from"], edge["to"], label=edge["relationship"])
43
 
44
  # Render to PNG format
45
+ print("Rendering graph to PNG format...")
46
  dot.format = "png"
47
  dot.render(filename="knowledge_graph", cleanup=True)
48
 
49
  # Convert PNG to base64 to display in Gradio
50
+ print("Converting PNG to base64...")
51
  with open("knowledge_graph.png", "rb") as img_file:
52
  img_base64 = base64.b64encode(img_file.read()).decode()
53
 
54
+ print("Returning base64 image to Gradio interface.")
55
  return f"data:image/png;base64,{img_base64}"
56
 
57
  iface = gr.Interface(
 
64
  live=False
65
  )
66
 
67
+ print("Launching Gradio interface...")
68
  iface.launch()