artificialguybr commited on
Commit
77b1ab6
·
verified ·
1 Parent(s): a476150

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +89 -19
app.py CHANGED
@@ -3,7 +3,19 @@ import json
3
  import logging
4
  import torch
5
  from PIL import Image
6
- from diffusers import DiffusionPipeline, EulerDiscreteScheduler, DPMSolverMultistepScheduler
 
 
 
 
 
 
 
 
 
 
 
 
7
  import spaces
8
 
9
  # Load LoRAs from JSON file
@@ -27,7 +39,7 @@ def update_selection(evt: gr.SelectData):
27
  )
28
 
29
  @spaces.GPU
30
- def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler):
31
  if selected_index is None:
32
  raise gr.Error("You must select a LoRA before proceeding.")
33
 
@@ -39,10 +51,44 @@ def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, schedule
39
  pipe.load_lora_weights(lora_path)
40
 
41
  # Set scheduler
42
- if scheduler == "Euler":
43
- pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
44
- elif scheduler == "DPM++ 2M":
45
- pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  # Generate image
48
  image = pipe(
@@ -50,6 +96,10 @@ def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, schedule
50
  negative_prompt=negative_prompt,
51
  num_inference_steps=steps,
52
  guidance_scale=cfg_scale,
 
 
 
 
53
  ).images[0]
54
 
55
  # Unload LoRA weights
@@ -57,8 +107,8 @@ def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, schedule
57
 
58
  return image
59
 
60
- with gr.Blocks(css="custom.css") as app:
61
- gr.Markdown("# artificialguybr LoRA portfolio")
62
  gr.Markdown(
63
  "### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr).\n"
64
  "**Note**: Generation quality may vary. For best results, adjust the parameters.\n"
@@ -68,33 +118,53 @@ with gr.Blocks(css="custom.css") as app:
68
  selected_index = gr.State(None)
69
 
70
  with gr.Row():
71
- gallery = gr.Gallery(
72
- [(item["image"], item["title"]) for item in loras],
73
- label="LoRA Gallery",
74
- allow_preview=False,
75
- columns=3
76
- )
 
 
 
 
 
77
 
 
78
  with gr.Column():
79
  prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
80
  selected_info = gr.Markdown("")
81
  prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Type a prompt after selecting a LoRA")
82
  negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")
83
-
 
84
  with gr.Row():
85
  cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
86
  steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
87
 
88
- scheduler = gr.Dropdown(label="Scheduler", choices=["Euler", "DPM++ 2M"], value="Euler")
 
 
 
 
 
 
89
 
90
- generate_button = gr.Button("Generate")
91
- result = gr.Image(label="Generated Image")
 
 
 
 
 
 
 
92
 
93
  gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
94
 
95
  generate_button.click(
96
  fn=run_lora,
97
- inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler],
98
  outputs=[result]
99
  )
100
 
 
3
  import logging
4
  import torch
5
  from PIL import Image
6
+ from diffusers import (
7
+ DiffusionPipeline,
8
+ EulerDiscreteScheduler,
9
+ DPMSolverMultistepScheduler,
10
+ DPMSolverSinglestepScheduler,
11
+ KDPM2DiscreteScheduler,
12
+ KDPM2AncestralDiscreteScheduler,
13
+ EulerAncestralDiscreteScheduler,
14
+ HeunDiscreteScheduler,
15
+ LMSDiscreteScheduler,
16
+ DEISMultistepScheduler,
17
+ UniPCMultistepScheduler
18
+ )
19
  import spaces
20
 
21
  # Load LoRAs from JSON file
 
39
  )
40
 
41
  @spaces.GPU
42
+ def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler, seed, width, height, lora_scale):
43
  if selected_index is None:
44
  raise gr.Error("You must select a LoRA before proceeding.")
45
 
 
51
  pipe.load_lora_weights(lora_path)
52
 
53
  # Set scheduler
54
+ scheduler_config = pipe.scheduler.config
55
+ if scheduler == "DPM++ 2M":
56
+ pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)
57
+ elif scheduler == "DPM++ 2M Karras":
58
+ pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
59
+ elif scheduler == "DPM++ 2M SDE":
60
+ pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, algorithm_type="sde-dpmsolver++")
61
+ elif scheduler == "DPM++ 2M SDE Karras":
62
+ pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
63
+ elif scheduler == "DPM++ SDE":
64
+ pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config)
65
+ elif scheduler == "DPM++ SDE Karras":
66
+ pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
67
+ elif scheduler == "DPM2":
68
+ pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config)
69
+ elif scheduler == "DPM2 Karras":
70
+ pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
71
+ elif scheduler == "DPM2 a":
72
+ pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config)
73
+ elif scheduler == "DPM2 a Karras":
74
+ pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
75
+ elif scheduler == "Euler":
76
+ pipe.scheduler = EulerDiscreteScheduler.from_config(scheduler_config)
77
+ elif scheduler == "Euler a":
78
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
79
+ elif scheduler == "Heun":
80
+ pipe.scheduler = HeunDiscreteScheduler.from_config(scheduler_config)
81
+ elif scheduler == "LMS":
82
+ pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config)
83
+ elif scheduler == "LMS Karras":
84
+ pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
85
+ elif scheduler == "DEIS":
86
+ pipe.scheduler = DEISMultistepScheduler.from_config(scheduler_config)
87
+ elif scheduler == "UniPC":
88
+ pipe.scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
89
+
90
+ # Set random seed for reproducibility
91
+ generator = torch.Generator(device="cuda").manual_seed(seed)
92
 
93
  # Generate image
94
  image = pipe(
 
96
  negative_prompt=negative_prompt,
97
  num_inference_steps=steps,
98
  guidance_scale=cfg_scale,
99
+ width=width,
100
+ height=height,
101
+ generator=generator,
102
+ cross_attention_kwargs={"scale": lora_scale},
103
  ).images[0]
104
 
105
  # Unload LoRA weights
 
107
 
108
  return image
109
 
110
+ with gr.Blocks(theme=gr.themes.Soft()) as app:
111
+ gr.Markdown("# artificialguybr LoRA Portfolio")
112
  gr.Markdown(
113
  "### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr).\n"
114
  "**Note**: Generation quality may vary. For best results, adjust the parameters.\n"
 
118
  selected_index = gr.State(None)
119
 
120
  with gr.Row():
121
+ with gr.Column(scale=2):
122
+ result = gr.Image(label="Generated Image", height=768)
123
+ generate_button = gr.Button("Generate", variant="primary")
124
+
125
+ with gr.Column(scale=1):
126
+ gallery = gr.Gallery(
127
+ [(item["image"], item["title"]) for item in loras],
128
+ label="LoRA Gallery",
129
+ allow_preview=False,
130
+ columns=2
131
+ )
132
 
133
+ with gr.Row():
134
  with gr.Column():
135
  prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
136
  selected_info = gr.Markdown("")
137
  prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Type a prompt after selecting a LoRA")
138
  negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")
139
+
140
+ with gr.Column():
141
  with gr.Row():
142
  cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
143
  steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
144
 
145
+ with gr.Row():
146
+ width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
147
+ height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
148
+
149
+ with gr.Row():
150
+ seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True)
151
+ lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.75)
152
 
153
+ scheduler = gr.Dropdown(
154
+ label="Scheduler",
155
+ choices=[
156
+ "DPM++ 2M", "DPM++ 2M Karras", "DPM++ 2M SDE", "DPM++ 2M SDE Karras",
157
+ "DPM++ SDE", "DPM++ SDE Karras", "DPM2", "DPM2 Karras", "DPM2 a", "DPM2 a Karras",
158
+ "Euler", "Euler a", "Heun", "LMS", "LMS Karras", "DEIS", "UniPC"
159
+ ],
160
+ value="Euler"
161
+ )
162
 
163
  gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
164
 
165
  generate_button.click(
166
  fn=run_lora,
167
+ inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler, seed, width, height, lora_scale],
168
  outputs=[result]
169
  )
170