Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,19 @@ import json
|
|
3 |
import logging
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
-
from diffusers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import spaces
|
8 |
|
9 |
# Load LoRAs from JSON file
|
@@ -27,7 +39,7 @@ def update_selection(evt: gr.SelectData):
|
|
27 |
)
|
28 |
|
29 |
@spaces.GPU
|
30 |
-
def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler):
|
31 |
if selected_index is None:
|
32 |
raise gr.Error("You must select a LoRA before proceeding.")
|
33 |
|
@@ -39,10 +51,44 @@ def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, schedule
|
|
39 |
pipe.load_lora_weights(lora_path)
|
40 |
|
41 |
# Set scheduler
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Generate image
|
48 |
image = pipe(
|
@@ -50,6 +96,10 @@ def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, schedule
|
|
50 |
negative_prompt=negative_prompt,
|
51 |
num_inference_steps=steps,
|
52 |
guidance_scale=cfg_scale,
|
|
|
|
|
|
|
|
|
53 |
).images[0]
|
54 |
|
55 |
# Unload LoRA weights
|
@@ -57,8 +107,8 @@ def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, schedule
|
|
57 |
|
58 |
return image
|
59 |
|
60 |
-
with gr.Blocks(
|
61 |
-
gr.Markdown("# artificialguybr LoRA
|
62 |
gr.Markdown(
|
63 |
"### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr).\n"
|
64 |
"**Note**: Generation quality may vary. For best results, adjust the parameters.\n"
|
@@ -68,33 +118,53 @@ with gr.Blocks(css="custom.css") as app:
|
|
68 |
selected_index = gr.State(None)
|
69 |
|
70 |
with gr.Row():
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
|
|
|
78 |
with gr.Column():
|
79 |
prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
|
80 |
selected_info = gr.Markdown("")
|
81 |
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Type a prompt after selecting a LoRA")
|
82 |
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")
|
83 |
-
|
|
|
84 |
with gr.Row():
|
85 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
|
86 |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
|
87 |
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
|
94 |
|
95 |
generate_button.click(
|
96 |
fn=run_lora,
|
97 |
-
inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler],
|
98 |
outputs=[result]
|
99 |
)
|
100 |
|
|
|
3 |
import logging
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
+
from diffusers import (
|
7 |
+
DiffusionPipeline,
|
8 |
+
EulerDiscreteScheduler,
|
9 |
+
DPMSolverMultistepScheduler,
|
10 |
+
DPMSolverSinglestepScheduler,
|
11 |
+
KDPM2DiscreteScheduler,
|
12 |
+
KDPM2AncestralDiscreteScheduler,
|
13 |
+
EulerAncestralDiscreteScheduler,
|
14 |
+
HeunDiscreteScheduler,
|
15 |
+
LMSDiscreteScheduler,
|
16 |
+
DEISMultistepScheduler,
|
17 |
+
UniPCMultistepScheduler
|
18 |
+
)
|
19 |
import spaces
|
20 |
|
21 |
# Load LoRAs from JSON file
|
|
|
39 |
)
|
40 |
|
41 |
@spaces.GPU
|
42 |
+
def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler, seed, width, height, lora_scale):
|
43 |
if selected_index is None:
|
44 |
raise gr.Error("You must select a LoRA before proceeding.")
|
45 |
|
|
|
51 |
pipe.load_lora_weights(lora_path)
|
52 |
|
53 |
# Set scheduler
|
54 |
+
scheduler_config = pipe.scheduler.config
|
55 |
+
if scheduler == "DPM++ 2M":
|
56 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config)
|
57 |
+
elif scheduler == "DPM++ 2M Karras":
|
58 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
|
59 |
+
elif scheduler == "DPM++ 2M SDE":
|
60 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, algorithm_type="sde-dpmsolver++")
|
61 |
+
elif scheduler == "DPM++ 2M SDE Karras":
|
62 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
|
63 |
+
elif scheduler == "DPM++ SDE":
|
64 |
+
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config)
|
65 |
+
elif scheduler == "DPM++ SDE Karras":
|
66 |
+
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True)
|
67 |
+
elif scheduler == "DPM2":
|
68 |
+
pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config)
|
69 |
+
elif scheduler == "DPM2 Karras":
|
70 |
+
pipe.scheduler = KDPM2DiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
|
71 |
+
elif scheduler == "DPM2 a":
|
72 |
+
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config)
|
73 |
+
elif scheduler == "DPM2 a Karras":
|
74 |
+
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
|
75 |
+
elif scheduler == "Euler":
|
76 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(scheduler_config)
|
77 |
+
elif scheduler == "Euler a":
|
78 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
|
79 |
+
elif scheduler == "Heun":
|
80 |
+
pipe.scheduler = HeunDiscreteScheduler.from_config(scheduler_config)
|
81 |
+
elif scheduler == "LMS":
|
82 |
+
pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config)
|
83 |
+
elif scheduler == "LMS Karras":
|
84 |
+
pipe.scheduler = LMSDiscreteScheduler.from_config(scheduler_config, use_karras_sigmas=True)
|
85 |
+
elif scheduler == "DEIS":
|
86 |
+
pipe.scheduler = DEISMultistepScheduler.from_config(scheduler_config)
|
87 |
+
elif scheduler == "UniPC":
|
88 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
|
89 |
+
|
90 |
+
# Set random seed for reproducibility
|
91 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
92 |
|
93 |
# Generate image
|
94 |
image = pipe(
|
|
|
96 |
negative_prompt=negative_prompt,
|
97 |
num_inference_steps=steps,
|
98 |
guidance_scale=cfg_scale,
|
99 |
+
width=width,
|
100 |
+
height=height,
|
101 |
+
generator=generator,
|
102 |
+
cross_attention_kwargs={"scale": lora_scale},
|
103 |
).images[0]
|
104 |
|
105 |
# Unload LoRA weights
|
|
|
107 |
|
108 |
return image
|
109 |
|
110 |
+
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
111 |
+
gr.Markdown("# artificialguybr LoRA Portfolio")
|
112 |
gr.Markdown(
|
113 |
"### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr).\n"
|
114 |
"**Note**: Generation quality may vary. For best results, adjust the parameters.\n"
|
|
|
118 |
selected_index = gr.State(None)
|
119 |
|
120 |
with gr.Row():
|
121 |
+
with gr.Column(scale=2):
|
122 |
+
result = gr.Image(label="Generated Image", height=768)
|
123 |
+
generate_button = gr.Button("Generate", variant="primary")
|
124 |
+
|
125 |
+
with gr.Column(scale=1):
|
126 |
+
gallery = gr.Gallery(
|
127 |
+
[(item["image"], item["title"]) for item in loras],
|
128 |
+
label="LoRA Gallery",
|
129 |
+
allow_preview=False,
|
130 |
+
columns=2
|
131 |
+
)
|
132 |
|
133 |
+
with gr.Row():
|
134 |
with gr.Column():
|
135 |
prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
|
136 |
selected_info = gr.Markdown("")
|
137 |
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Type a prompt after selecting a LoRA")
|
138 |
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")
|
139 |
+
|
140 |
+
with gr.Column():
|
141 |
with gr.Row():
|
142 |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
|
143 |
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
|
144 |
|
145 |
+
with gr.Row():
|
146 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
147 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True)
|
151 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.75)
|
152 |
|
153 |
+
scheduler = gr.Dropdown(
|
154 |
+
label="Scheduler",
|
155 |
+
choices=[
|
156 |
+
"DPM++ 2M", "DPM++ 2M Karras", "DPM++ 2M SDE", "DPM++ 2M SDE Karras",
|
157 |
+
"DPM++ SDE", "DPM++ SDE Karras", "DPM2", "DPM2 Karras", "DPM2 a", "DPM2 a Karras",
|
158 |
+
"Euler", "Euler a", "Heun", "LMS", "LMS Karras", "DEIS", "UniPC"
|
159 |
+
],
|
160 |
+
value="Euler"
|
161 |
+
)
|
162 |
|
163 |
gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
|
164 |
|
165 |
generate_button.click(
|
166 |
fn=run_lora,
|
167 |
+
inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler, seed, width, height, lora_scale],
|
168 |
outputs=[result]
|
169 |
)
|
170 |
|