import gradio as gr import requests import json import base64 from PIL import Image import io import time def encode_image(image): if isinstance(image, dict) and 'path' in image: image_path = image['path'] elif isinstance(image, str): image_path = image else: raise ValueError("Unsupported image format") with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') def bot_streaming(message, history, api_key, model, temperature, max_tokens, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, stop, min_p, top_a, seed, logit_bias, logprobs, top_logprobs, response_format, tools, tool_choice): headers = { "Authorization": f"Bearer {api_key}", "Content-Type": "application/json" } messages = [] images = [] for i, msg in enumerate(history): if isinstance(msg[0], tuple): image, text = msg[0] base64_image = encode_image(image) messages.append({ "role": "user", "content": [ {"type": "text", "text": text}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}} ] }) messages.append({"role": "assistant", "content": msg[1]}) images.append(Image.open(image['path'] if isinstance(image, dict) else image).convert("RGB")) else: messages.append({"role": "user", "content": msg[0]}) messages.append({"role": "assistant", "content": msg[1]}) if isinstance(message, dict) and "files" in message and message["files"]: image = message["files"][0] base64_image = encode_image(image) content = [ {"type": "text", "text": message["text"]}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}} ] images.append(Image.open(image['path'] if isinstance(image, dict) else image).convert("RGB")) else: content = message["text"] if isinstance(message, dict) else message messages.append({"role": "user", "content": content}) data = { "model": model, "messages": messages, "stream": True, "temperature": temperature, "max_tokens": max_tokens, "top_p": top_p, "top_k": top_k, "frequency_penalty": frequency_penalty, "presence_penalty": presence_penalty, "repetition_penalty": repetition_penalty, "stop": stop if stop else None, "min_p": min_p, "top_a": top_a, "seed": seed, "logit_bias": logit_bias, "logprobs": logprobs, "top_logprobs": top_logprobs, "response_format": response_format, "tools": tools, "tool_choice": tool_choice } response = requests.post( "https://openrouter.ai/api/v1/chat/completions", headers=headers, json=data, stream=True ) buffer = "" for chunk in response.iter_lines(): if chunk: chunk = chunk.decode('utf-8') if chunk.startswith("data: "): chunk = chunk[6:] if chunk.strip() == "[DONE]": break try: chunk_data = json.loads(chunk) if 'choices' in chunk_data and len(chunk_data['choices']) > 0: delta = chunk_data['choices'][0].get('delta', {}) if 'content' in delta: buffer += delta['content'] yield buffer time.sleep(0.01) except json.JSONDecodeError: continue with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🤖 OpenRouter API Multimodal Chat Chat with various AI models using the OpenRouter API. Supports text and image interactions. ## 🚀 Quick Start: 1. Enter your OpenRouter API key 2. Choose a model 3. Start chatting! ## 🔧 Advanced: - Adjust parameters in the "Advanced Settings" section - Upload images for multimodal interactions Enjoy your AI-powered conversation! """) with gr.Row(): with gr.Column(scale=1): api_key = gr.Textbox(label="API Key", type="password", placeholder="Enter your OpenRouter API key") model = gr.Dropdown( label="Select Model", choices=[ "google/gemini-flash-1.5", "openai/gpt-4o-mini", "anthropic/claude-3.5-sonnet:beta", "gryphe/mythomax-l2-13b", "meta-llama/llama-3.1-70b-instruct", "microsoft/wizardlm-2-8x22b", "nousresearch/hermes-3-llama-3.1-405b", "mistralai/mistral-nemo", "meta-llama/llama-3.1-8b-instruct", "deepseek/deepseek-chat", "mistralai/mistral-tiny", "openai/gpt-4o", "mistralai/mistral-7b-instruct", "meta-llama/llama-3-70b-instruct", "microsoft/wizardlm-2-7b" ], value="google/gemini-flash-1.5" ) with gr.Accordion("Advanced Settings", open=False): with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Basic Parameters") temperature = gr.Slider(minimum=0, maximum=2, value=1, step=0.1, label="Temperature") max_tokens = gr.Slider(minimum=1, maximum=4096, value=1000, step=1, label="Max Tokens") top_p = gr.Slider(minimum=0, maximum=1, value=1, step=0.01, label="Top P") top_k = gr.Slider(minimum=0, maximum=100, value=0, step=1, label="Top K") with gr.Column(scale=1): gr.Markdown("### Penalty Parameters") frequency_penalty = gr.Slider(minimum=-2, maximum=2, value=0, step=0.1, label="Frequency Penalty") presence_penalty = gr.Slider(minimum=-2, maximum=2, value=0, step=0.1, label="Presence Penalty") repetition_penalty = gr.Slider(minimum=0, maximum=2, value=1, step=0.1, label="Repetition Penalty") with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Advanced Control") stop = gr.Textbox(label="Stop Sequence") min_p = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Min P") top_a = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Top A") seed = gr.Number(label="Seed", precision=0) with gr.Column(scale=1): gr.Markdown("### Logging and Formatting") logprobs = gr.Checkbox(label="Log Probabilities") top_logprobs = gr.Slider(minimum=0, maximum=20, value=0, step=1, label="Top Log Probabilities") logit_bias = gr.Textbox(label="Logit Bias (JSON)") response_format = gr.Textbox(label="Response Format (JSON)") with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Tools") tools = gr.Textbox(label="Tools (JSON Array)", lines=3) tool_choice = gr.Textbox(label="Tool Choice") with gr.Column(scale=2): chatbot = gr.ChatInterface( fn=bot_streaming, additional_inputs=[ api_key, model, temperature, max_tokens, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, stop, min_p, top_a, seed, logit_bias, logprobs, top_logprobs, response_format, tools, tool_choice ], title="đŸ’Ŧ Chat with AI", description="Upload images or type your message to start the conversation.", retry_btn="🔄 Retry", undo_btn="↩ī¸ Undo", clear_btn="🗑ī¸ Clear", multimodal=True, cache_examples=False, fill_height=True, ) demo.launch(debug=True, share=True)