Updated model to spanish
Browse files
app.py
CHANGED
@@ -9,21 +9,19 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Proce
|
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
-
|
13 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="thunninoi/wav2vec2-japanese-vtuber", device=device)
|
14 |
|
15 |
# load text-to-speech checkpoint and speaker embeddings
|
16 |
-
processor = SpeechT5Processor.from_pretrained("
|
17 |
-
|
18 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
19 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
20 |
|
21 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
22 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
23 |
|
24 |
|
25 |
-
def translate(audio):
|
26 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "
|
27 |
return outputs["text"]
|
28 |
|
29 |
|
|
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
|
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
processor = SpeechT5Processor.from_pretrained("Sandiago21/speecht5_finetuned_facebook_voxpopuli_spanish")
|
16 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("Sandiago21/speecht5_finetuned_facebook_voxpopuli_spanish").to(device)
|
|
|
17 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
18 |
|
19 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
20 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
21 |
|
22 |
|
23 |
+
def translate(audio, language="es"):
|
24 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", language=language})
|
25 |
return outputs["text"]
|
26 |
|
27 |
|