Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
import numpy as np
|
4 |
+
from scipy.io.wavfile import write
|
5 |
+
|
6 |
+
# Title of the Streamlit app
|
7 |
+
st.title("Text-to-Audio Generation App")
|
8 |
+
|
9 |
+
# Text area for user input
|
10 |
+
text_input = st.text_area('Enter text to generate audio!')
|
11 |
+
|
12 |
+
# Create the audio generation pipeline
|
13 |
+
try:
|
14 |
+
pipe = pipeline(model="suno/bark-small")
|
15 |
+
except ImportError as e:
|
16 |
+
st.error(f"Error importing pipeline from transformers: {e}")
|
17 |
+
st.stop()
|
18 |
+
|
19 |
+
# Generate audio based on user input
|
20 |
+
if text_input:
|
21 |
+
with st.spinner('Generating audio...'):
|
22 |
+
output = pipe(text_input)
|
23 |
+
|
24 |
+
# Extract audio array and sampling rate from the output
|
25 |
+
audio_array = output["audio"]
|
26 |
+
sampling_rate = output["sampling_rate"]
|
27 |
+
|
28 |
+
# Ensure the audio array is a numpy array
|
29 |
+
audio_array = np.array(audio_array, dtype=np.float32)
|
30 |
+
|
31 |
+
# Squeeze to remove single-dimensional entries from the shape of the array
|
32 |
+
audio_array = np.squeeze(audio_array)
|
33 |
+
|
34 |
+
# Save the audio array as a WAV file
|
35 |
+
write("output.wav", sampling_rate, audio_array)
|
36 |
+
|
37 |
+
# Read the saved WAV file
|
38 |
+
audio_file = open("output.wav", "rb")
|
39 |
+
audio_bytes = audio_file.read()
|
40 |
+
|
41 |
+
# Display the output audio
|
42 |
+
st.audio(audio_bytes, format="audio/wav")
|
43 |
+
|
44 |
+
# Optional: Display JSON output for debugging
|
45 |
+
if st.checkbox('Show raw output'):
|
46 |
+
st.json(output)
|