import gradio as gr import os import torch from transformers import AutoTokenizer, AutoModel from fpdf import FPDF from gtts import gTTS from pdfminer.high_level import extract_text from docx import Document from reportlab.lib.pagesizes import letter from reportlab.pdfgen import canvas # Import spaCy and handle model loading import spacy try: nlp = spacy.load("en_core_web_sm") except OSError: # Download the model if not found from spacy.cli import download download("en_core_web_sm") nlp = spacy.load("en_core_web_sm") # Load the LegalBERT model and tokenizer with use_fast=False tokenizer = AutoTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased", use_fast=False) model = AutoModel.from_pretrained("nlpaueb/legal-bert-base-uncased") # Convert DOCX to PDF using ReportLab def docx_to_pdf(docx_file, output_pdf="converted_doc.pdf"): doc = Document(docx_file) full_text = [para.text for para in doc.paragraphs] pdf = canvas.Canvas(output_pdf, pagesize=letter) pdf.setFont("Helvetica", 12) text_object = pdf.beginText(40, 750) for line in full_text: text_object.textLine(line) pdf.drawText(text_object) pdf.save() return output_pdf # Extractive summarization using LegalBERT and spaCy def extractive_summarization(text, num_sentences=5): # Tokenize text into sentences using spaCy doc = nlp(text) sentences = [sent.text.strip() for sent in doc.sents if sent.text.strip()] # Handle case where document has fewer sentences than requested num_sentences = min(num_sentences, len(sentences)) # Encode sentences inputs = tokenizer(sentences, return_tensors='pt', padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs) # Get sentence embeddings by averaging token embeddings embeddings = outputs.last_hidden_state.mean(dim=1) # Compute similarity of each sentence to the document embedding document_embedding = embeddings.mean(dim=0, keepdim=True) similarities = torch.nn.functional.cosine_similarity(embeddings, document_embedding) # Select top sentences based on similarity scores top_k = torch.topk(similarities, k=num_sentences) selected_indices = top_k.indices.sort().values # Sort indices to maintain original order summary_sentences = [sentences[idx] for idx in selected_indices] # Combine sentences into summary summary = ' '.join(summary_sentences) return summary # Process input file (PDF or DOCX) def pdf_to_text(text, PDF, num_sentences=5): try: if PDF is not None: file_extension = os.path.splitext(PDF.name)[1].lower() if file_extension == '.docx': pdf_file_path = docx_to_pdf(PDF.name) text = extract_text(pdf_file_path) elif file_extension == '.pdf': text = extract_text(PDF.name) else: return None, "Unsupported file type", None elif text != "": pass # Use the text input provided by the user else: return None, "Please provide input text or upload a file.", None summary = extractive_summarization(text, num_sentences) # Generate a PDF of the summary pdf = FPDF() pdf.add_page() pdf.set_font("Times", size=12) pdf.multi_cell(190, 10, txt=summary, align='L') pdf_output_path = "legal_summary.pdf" pdf.output(pdf_output_path) # Generate an audio file of the summary audio_output_path = "legal_summary.wav" tts = gTTS(text=summary, lang='en', slow=False) tts.save(audio_output_path) return audio_output_path, summary, pdf_output_path except Exception as e: return None, f"An error occurred: {str(e)}", None # Preloaded document handler def process_sample_document(num_sentences=5): sample_document_path = "Marbury v. Madison.pdf" with open(sample_document_path, "rb") as f: return pdf_to_text("", f, num_sentences) # Gradio interface with gr.Blocks() as iface: with gr.Row(): process_sample_button = gr.Button("Summarize Marbury v. Madison Case (Pre-Uploaded)") text_input = gr.Textbox(label="Input Text") file_input = gr.File(label="Upload PDF or DOCX") slider = gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Number of Summary Sentences") audio_output = gr.Audio(label="Generated Audio") summary_output = gr.Textbox(label="Generated Summary") pdf_output = gr.File(label="Summary PDF") # Update the function calls to match new parameters process_sample_button.click( fn=process_sample_document, inputs=slider, outputs=[audio_output, summary_output, pdf_output] ) # Use submit event for the text input and file input def on_submit(text, file, num_sentences): return pdf_to_text(text, file, num_sentences) text_input.submit( fn=on_submit, inputs=[text_input, file_input, slider], outputs=[audio_output, summary_output, pdf_output] ) file_input.change( fn=on_submit, inputs=[text_input, file_input, slider], outputs=[audio_output, summary_output, pdf_output] ) if __name__ == "__main__": iface.launch()