import gradio as gr import os import nltk from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from fpdf import FPDF from gtts import gTTS from pdfminer.high_level import extract_text nltk.download('punkt') # Load the models and tokenizers once, not every time the function is called tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") # Main processing function def pdf_to_text(text, PDF, min_length=20): try: # Extract text from PDF if no input text provided if text == "": text = extract_text(PDF.name) # Tokenize text inputs = tokenizer([text], max_length=1024, return_tensors="pt") min_length = int(min_length) # Generate summary summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=min_length, max_length=min_length+1000) output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0] # Save summarized text to PDF pdf = FPDF() pdf.add_page() pdf.set_font("Times", size=12) pdf.multi_cell(190, 10, txt=output_text, align='C') pdf_output_path = "legal.pdf" pdf.output(pdf_output_path) # Convert summarized text to audio audio_output_path = "legal.wav" tts = gTTS(text=output_text, lang='en', slow=False) tts.save(audio_output_path) return audio_output_path, output_text, pdf_output_path except Exception as e: return None, f"An error occurred: {str(e)}", None # Gradio interface iface = gr.Interface( fn=pdf_to_text, inputs=["text", gr.inputs.File(label="Upload PDF"), gr.inputs.Slider(minimum=10, maximum=100, step=10, default=20, label="Summary Minimum Length")], outputs=["audio", "text", "file"] ) if __name__ == "__main__": iface.launch()