import streamlit as st import subprocess from transformers import AutoTokenizer, AutoModelForCausalLM import torch import re st.title('Eleanor Rigby') hf_token = st.secrets["hf_token"] inference_model = AutoModelForCausalLM.from_pretrained("arieridwans/phi_2-finetuned-lyrics", trust_remote_code=True, torch_dtype=torch.float32, token=hf_token) inference_tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", use_fast=True) inference_tokenizer.pad_token=inference_tokenizer.eos_token user_prompt = st.text_area("Enter your prompt that can be song lyrics e.g. 'Yesterday, I saw you in my dream'") def run_inference(): instruct_prompt = "Instruct:You are a song writer and your main reference is The Beatles. Write a song lyrics by completing these words:" output_prompt = "Output:" input = inference_tokenizer(""" {0}{1}\n{2} """.format(instruct_prompt, user_prompt, output_prompt), return_tensors="pt", return_attention_mask=False, padding=True, truncation=True) result = inference_model.generate(**input, repetition_penalty=1.2, max_length=1024) output = inference_tokenizer.batch_decode(result, skip_special_tokens=True)[0] st.text(output) st.button('Generate Result', on_click=run_inference)