import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load the Phi 2 model and tokenizer tokenizer = AutoTokenizer.from_pretrained( "microsoft/phi-2", trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( "arieridwans/phi_2-finetuned-lyrics", device_map="auto", trust_remote_code=True ) # Streamlit UI st.title("Eleanor Rigby") # User input prompt user_prompt = st.text_area("Enter your prompt that can be song lyrics:", """Yesterday, I saw you in my dream""") # Generate output based on user input if st.button("Generate Output"): instruct_prompt = "Instruct:You are a song writer and your main reference is The Beatles. Write a song lyrics by completing these words:" output_prompt = "Output:" input = inference_tokenizer(""" {0}{1}\n{2} """.format(instruct_prompt, user_prompt, output_prompt), return_tensors="pt", return_attention_mask=False, padding=True, truncation=True) result = inference_model.generate(**input, repetition_penalty=1.2, max_length=1024) output = inference_tokenizer.batch_decode(result, skip_special_tokens=True)[0] st.text("Generated Result:") st.write(output)