Spaces:
Running
Running
import os | |
import requests | |
import streamlit as st | |
# Get the Hugging Face API Token from environment variables | |
HF_API_TOKEN = os.getenv("HF_API_KEY") | |
if not HF_API_TOKEN: | |
raise ValueError("Hugging Face API Token is not set in the environment variables.") | |
# Hugging Face API URLs and headers for models | |
MISTRAL_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1" | |
MINICHAT_API_URL = "https://api-inference.huggingface.co/models/GeneZC/MiniChat-2-3B" | |
DIALOGPT_API_URL = "https://api-inference.huggingface.co/models/microsoft/DialoGPT-large" | |
PHI3_API_URL = "https://api-inference.huggingface.co/models/microsoft/Phi-3-mini-4k-instruct" | |
GEMMA_API_URL = "https://api-inference.huggingface.co/models/google/gemma-1.1-7b-it" | |
GEMMA_2B_API_URL = "https://api-inference.huggingface.co/models/google/gemma-1.1-2b-it" | |
META_LLAMA_70B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct" | |
META_LLAMA_8B_API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct" | |
GEMMA_27B_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b" | |
GEMMA_27B_IT_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-27b-it" | |
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"} | |
def query_model(api_url, payload): | |
response = requests.post(api_url, headers=HEADERS, json=payload) | |
return response.json() | |
def add_message_to_conversation(user_message, bot_message, model_name): | |
st.session_state.conversation.append((user_message, bot_message, model_name)) | |
# Streamlit app | |
st.set_page_config(page_title="Multi-LLM Chatbot Interface", layout="wide") | |
st.title("Multi-LLM Chatbot Interface") | |
st.write("Multi LLM-Chatbot Interface") | |
# Initialize session state for conversation and model history | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = [] | |
if "model_history" not in st.session_state: | |
st.session_state.model_history = {model: [] for model in [ | |
"Mistral-8x7B", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct", | |
"Gemma-1.1-7B", "Gemma-1.1-2B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct", | |
"Gemma-2-27B", "Gemma-2-27B-IT" | |
]} | |
# Dropdown for LLM selection | |
llm_selection = st.selectbox("Select Language Model", [ | |
"Mistral-8x7B", "MiniChat-2-3B", "DialoGPT (GPT-2-1.5B)", "Phi-3-mini-4k-instruct", | |
"Gemma-1.1-7B", "Gemma-1.1-2B", "Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct", | |
"Gemma-2-27B", "Gemma-2-27B-IT" | |
]) | |
# User input for question | |
question = st.text_input("Question", placeholder="Enter your question here...") | |
# Handle user input and LLM response | |
if st.button("Send") and question: | |
try: | |
with st.spinner("Waiting for the model to respond..."): | |
chat_history = " ".join(st.session_state.model_history[llm_selection]) + f"User: {question}\n" | |
if llm_selection == "Mistral-8x7B": | |
response = query_model(MISTRAL_API_URL, {"inputs": chat_history}) | |
answer = response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" | |
elif llm_selection == "MiniChat-2-3B": | |
response = query_model(MINICHAT_API_URL, {"inputs": chat_history}) | |
if "error" in response and "is currently loading" in response["error"]: | |
answer = f"Model is loading, please wait {response['estimated_time']} seconds." | |
else: | |
answer = response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" | |
elif llm_selection == "DialoGPT (GPT-2-1.5B)": | |
response = query_model(DIALOGPT_API_URL, {"inputs": chat_history}) | |
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" | |
elif llm_selection == "Phi-3-mini-4k-instruct": | |
response = query_model(PHI3_API_URL, {"inputs": chat_history}) | |
answer = response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" | |
elif llm_selection == "Gemma-1.1-7B": | |
response = query_model(GEMMA_API_URL, {"inputs": chat_history}) | |
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" | |
elif llm_selection == "Gemma-1.1-2B": | |
response = query_model(GEMMA_2B_API_URL, {"inputs": chat_history}) | |
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" | |
elif llm_selection == "Meta-Llama-3-70B-Instruct": | |
response = query_model(META_LLAMA_70B_API_URL, {"inputs": chat_history}) | |
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" | |
elif llm_selection == "Meta-Llama-3-8B-Instruct": | |
response = query_model(META_LLAMA_8B_API_URL, {"inputs": chat_history}) | |
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" | |
elif llm_selection == "Gemma-2-27B": | |
response = query_model(GEMMA_27B_API_URL, {"inputs": chat_history}) | |
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" | |
elif llm_selection == "Gemma-2-27B-IT": | |
response = query_model(GEMMA_27B_IT_API_URL, {"inputs": chat_history}) | |
answer = response.get("generated_text", "No response") if isinstance(response, dict) else response[0].get("generated_text", "No response") if isinstance(response, list) else "No response" | |
add_message_to_conversation(question, answer, llm_selection) | |
st.session_state.model_history[llm_selection].append(f"User: {question}\n{llm_selection}: {answer}\n") | |
except ValueError as e: | |
st.error(str(e)) | |
# Custom CSS for chat bubbles | |
st.markdown( | |
""" | |
<style> | |
.chat-bubble { | |
padding: 10px 14px; | |
border-radius: 14px; | |
margin-bottom: 10px; | |
display: inline-block; | |
max-width: 80%; | |
color: black; | |
} | |
.chat-bubble.user { | |
background-color: #dcf8c6; | |
align-self: flex-end; | |
} | |
.chat-bubble.bot { | |
background-color: #fff; | |
align-self: flex-start; | |
} | |
.chat-container { | |
display: flex; | |
flex-direction: column; | |
gap: 10px; | |
margin-top: 20px; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Display the conversation | |
st.write('<div class="chat-container">', unsafe_allow_html=True) | |
for user_message, bot_message, model_name in st.session_state.conversation: | |
st.write(f'<div class="chat-bubble user">You: {user_message}</div>', unsafe_allow_html=True) | |
st.write(f'<div class="chat-bubble bot">{model_name}: {bot_message}</div>', unsafe_allow_html=True) | |
st.write('</div>', unsafe_allow_html=True) |