from PIL import Image, ImageDraw, ImageFont import numpy as np import cv2 import tensorflow as tf import gradio as gr import io def load_model(model_path): model = tf.keras.models.load_model(model_path) model.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.BinaryCrossentropy(), metrics=['accuracy']) return model def get_model_summary(model): stream = io.StringIO() model.summary(print_fn=lambda x: stream.write(x + "\n")) summary_str = stream.getvalue() stream.close() return summary_str def get_input_shape(model): input_shape = model.input_shape[1:] # Skip the batch dimension return input_shape def preprocess_image(image, input_shape): img = np.array(image) num_channels = input_shape[-1] if num_channels == 1: # Model expects grayscale if len(img.shape) == 2: # Image is already grayscale img = np.expand_dims(img, axis=-1) elif img.shape[2] == 3: # Convert RGB to grayscale img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = np.expand_dims(img, axis=-1) elif num_channels == 3: # Model expects RGB if len(img.shape) == 2: # Convert grayscale to RGB img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) elif img.shape[2] == 1: # Convert single channel to RGB img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) img_resized = cv2.resize(img, (input_shape[0], input_shape[1])) img_normalized = img_resized / 255.0 img_batch = np.expand_dims(img_normalized, axis=0) return img_batch def diagnose_image(image, model, input_shape): img_batch = preprocess_image(image, input_shape) prediction = model.predict(img_batch) glaucoma_probability = prediction[0][0] result_text = f"Probability of glaucoma: {glaucoma_probability:.2%}" img_display = np.array(image) if img_display.shape[2] == 1: # Convert to RGB for display img_display = cv2.cvtColor(img_display.squeeze(), cv2.COLOR_GRAY2RGB) image_pil = Image.fromarray(img_display) draw = ImageDraw.Draw(image_pil) font = ImageFont.load_default() text = f"{glaucoma_probability:.2%}" text_bbox = draw.textbbox((0, 0), text, font=font) text_size = (text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]) rect_width = 200 rect_height = 100 rect_x = (image_pil.width - rect_width) // 2 rect_y = (image_pil.height - rect_height) // 2 draw.rectangle([rect_x, rect_y, rect_x + rect_width, rect_y + rect_height], outline="red", width=3) text_x = rect_x + (rect_width - text_size[0]) // 2 text_y = rect_y + (rect_height - text_size[1]) // 2 draw.text((text_x, text_y), text, fill="red", font=font) return image_pil, result_text def main(): with gr.Blocks() as demo: gr.Markdown("# Glaucoma Detection App") gr.Markdown("Upload an eye image to detect the probability of glaucoma.") with gr.Row(): model_file = gr.File(label="Upload Model (.h5 or .keras)") load_model_btn = gr.Button("Load Model") model_info = gr.Markdown() image = gr.Image(type="pil", label="Upload Image") submit_btn = gr.Button("Diagnose") result = gr.Textbox(label="Diagnosis Result") def load_and_display_model_info(file): model = load_model(file.name) model_summary = get_model_summary(model) input_shape = get_input_shape(model) return model, model_summary, input_shape model = gr.State(None) input_shape = gr.State(None) def diagnose_and_display(image, model, input_shape): return diagnose_image(image, model, input_shape) load_model_btn.click(fn=load_and_display_model_info, inputs=model_file, outputs=[model, model_info, input_shape]) submit_btn.click(fn=diagnose_and_display, inputs=[image, model, input_shape], outputs=[image, result]) gr.Markdown("### Glaucoma Analyzer V.1.0.0 by Thariq Arian") demo.launch() if __name__ == "__main__": main()