Spaces:
Runtime error
Runtime error
File size: 2,200 Bytes
be8d9d0 287c61a be8d9d0 287c61a be8d9d0 f740bd4 be8d9d0 82255f2 be8d9d0 287c61a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import spaces
import gradio as gr
from gradio_imageslider import ImageSlider
from PIL import Image
import numpy as np
from aura_sr import AuraSR
import torch
import time
import spaces
# Force CPU usage
torch.set_default_tensor_type(torch.FloatTensor)
# Override torch.load to always use CPU
original_load = torch.load
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))
# Initialize the AuraSR model
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
# Restore original torch.load
torch.load = original_load
def process_image(input_image, scale_factor):
if input_image is None:
raise gr.Error("Please provide an image to upscale.")
start_time = time.time()
# Convert to PIL Image for resizing
pil_image = Image.fromarray(input_image)
if scale_factor == 2:
pil_image = pil_image.resize((int(pil_image.width * 0.5), int(pil_image.height * 0.5)), Image.LANCZOS)
elif scale_factor == 3:
pil_image = pil_image.resize((int(pil_image.width * 0.75), int(pil_image.height * 0.75)), Image.LANCZOS)
# Upscale the image using AuraSR
upscaled_image = process_image_on_gpu(pil_image)
# Convert result to numpy array if it's not already
result_array = np.array(upscaled_image)
end_time = time.time()
processing_time = end_time - start_time
return [input_image, result_array], f"Processing time: {processing_time:.2f} seconds"
@spaces.GPU
def process_image_on_gpu(pil_image):
try:
return aura_sr.upscale_4x(pil_image)
except Exception as e:
raise gr.Error(f"An error occurred during image upscaling: {str(e)}")
with gr.Blocks() as demo:
gr.Markdown("# Image Upscaler")
with gr.Row():
input_image = gr.Image(label="Input Image", type="numpy")
scale_factor = gr.Radio([2, 3, 4], label="Scale Factor", value=4)
with gr.Row():
image_slider = ImageSlider(label="Before/After")
upscale_button = gr.Button("Upscale")
processing_time_text = gr.Textbox(label="Processing Time")
upscale_button.click(fn=process_image, inputs=[input_image, scale_factor], outputs=[image_slider, processing_time_text])
demo.launch()
|