Spaces:
Runtime error
Runtime error
| import gc | |
| import hashlib | |
| import os | |
| import queue | |
| import threading | |
| import warnings | |
| import librosa | |
| import numpy as np | |
| import onnxruntime as ort | |
| import soundfile as sf | |
| import torch | |
| from tqdm import tqdm | |
| warnings.filterwarnings("ignore") | |
| stem_naming = {'Vocals': 'Instrumental', 'Other': 'Instruments', 'Instrumental': 'Vocals', 'Drums': 'Drumless', 'Bass': 'Bassless'} | |
| class MDXModel: | |
| def __init__(self, device, dim_f, dim_t, n_fft, hop=1024, stem_name=None, compensation=1.000): | |
| print("[~] Initializing MDXModel...") | |
| self.dim_f = dim_f | |
| self.dim_t = dim_t | |
| self.dim_c = 4 | |
| self.n_fft = n_fft | |
| self.hop = hop | |
| self.stem_name = stem_name | |
| self.compensation = compensation | |
| self.n_bins = self.n_fft // 2 + 1 | |
| self.chunk_size = hop * (self.dim_t - 1) | |
| self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(device) | |
| out_c = self.dim_c | |
| self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]).to(device) | |
| print("[+] MDXModel initialized") | |
| def stft(self, x): | |
| print("[~] Performing STFT...") | |
| x = x.reshape([-1, self.chunk_size]) | |
| x = torch.stft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True, return_complex=True) | |
| x = torch.view_as_real(x) | |
| x = x.permute([0, 3, 1, 2]) | |
| x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 4, self.n_bins, self.dim_t]) | |
| print("[+] STFT completed") | |
| return x[:, :, :self.dim_f] | |
| def istft(self, x, freq_pad=None): | |
| print("[~] Performing inverse STFT...") | |
| freq_pad = self.freq_pad.repeat([x.shape[0], 1, 1, 1]) if freq_pad is None else freq_pad | |
| x = torch.cat([x, freq_pad], -2) | |
| x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape([-1, 2, self.n_bins, self.dim_t]) | |
| x = x.permute([0, 2, 3, 1]) | |
| x = x.contiguous() | |
| x = torch.view_as_complex(x) | |
| x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True) | |
| print("[+] Inverse STFT completed") | |
| return x.reshape([-1, 2, self.chunk_size]) | |
| class MDX: | |
| DEFAULT_SR = 44100 | |
| DEFAULT_CHUNK_SIZE = 0 * DEFAULT_SR | |
| DEFAULT_MARGIN_SIZE = 1 * DEFAULT_SR | |
| DEFAULT_PROCESSOR = 0 | |
| def __init__(self, model_path: str, params: MDXModel, processor=DEFAULT_PROCESSOR): | |
| print("[~] Initializing MDX...") | |
| self.device = torch.device(f'cuda:{processor}') if processor >= 0 else torch.device('cpu') | |
| self.provider = ['CUDAExecutionProvider'] if processor >= 0 else ['CPUExecutionProvider'] | |
| self.model = params | |
| print(f"[~] Loading ONNX model from {model_path}...") | |
| self.ort = ort.InferenceSession(model_path, providers=self.provider) | |
| print("[~] Preloading model...") | |
| self.ort.run(None, {'input': torch.rand(1, 4, params.dim_f, params.dim_t).numpy()}) | |
| self.process = lambda spec: self.ort.run(None, {'input': spec.cpu().numpy()})[0] | |
| self.prog = None | |
| print("[+] MDX initialized") | |
| def get_hash(model_path): | |
| print(f"[~] Calculating hash for model: {model_path}") | |
| try: | |
| with open(model_path, 'rb') as f: | |
| f.seek(- 10000 * 1024, 2) | |
| model_hash = hashlib.md5(f.read()).hexdigest() | |
| except: | |
| model_hash = hashlib.md5(open(model_path, 'rb').read()).hexdigest() | |
| print(f"[+] Model hash: {model_hash}") | |
| return model_hash | |
| def segment(wave, combine=True, chunk_size=DEFAULT_CHUNK_SIZE, margin_size=DEFAULT_MARGIN_SIZE): | |
| print("[~] Segmenting wave...") | |
| if combine: | |
| processed_wave = None | |
| for segment_count, segment in enumerate(wave): | |
| start = 0 if segment_count == 0 else margin_size | |
| end = None if segment_count == len(wave) - 1 else -margin_size | |
| if margin_size == 0: | |
| end = None | |
| if processed_wave is None: | |
| processed_wave = segment[:, start:end] | |
| else: | |
| processed_wave = np.concatenate((processed_wave, segment[:, start:end]), axis=-1) | |
| else: | |
| processed_wave = [] | |
| sample_count = wave.shape[-1] | |
| if chunk_size <= 0 or chunk_size > sample_count: | |
| chunk_size = sample_count | |
| if margin_size > chunk_size: | |
| margin_size = chunk_size | |
| for segment_count, skip in enumerate(range(0, sample_count, chunk_size)): | |
| margin = 0 if segment_count == 0 else margin_size | |
| end = min(skip + chunk_size + margin_size, sample_count) | |
| start = skip - margin | |
| cut = wave[:, start:end].copy() | |
| processed_wave.append(cut) | |
| if end == sample_count: | |
| break | |
| print("[+] Wave segmentation completed") | |
| return processed_wave | |
| def pad_wave(self, wave): | |
| print("[~] Padding wave...") | |
| n_sample = wave.shape[1] | |
| trim = self.model.n_fft // 2 | |
| gen_size = self.model.chunk_size - 2 * trim | |
| pad = gen_size - n_sample % gen_size | |
| wave_p = np.concatenate((np.zeros((2, trim)), wave, np.zeros((2, pad)), np.zeros((2, trim))), 1) | |
| mix_waves = [] | |
| for i in range(0, n_sample + pad, gen_size): | |
| waves = np.array(wave_p[:, i:i + self.model.chunk_size]) | |
| mix_waves.append(waves) | |
| mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(self.device) | |
| print(f"[+] Wave padded. Shape: {mix_waves.shape}") | |
| return mix_waves, pad, trim | |
| def _process_wave(self, mix_waves, trim, pad, q: queue.Queue, _id: int): | |
| print(f"[~] Processing wave segment {_id}...") | |
| mix_waves = mix_waves.split(1) | |
| with torch.no_grad(): | |
| pw = [] | |
| for mix_wave in mix_waves: | |
| self.prog.update() | |
| spec = self.model.stft(mix_wave) | |
| processed_spec = torch.tensor(self.process(spec)) | |
| processed_wav = self.model.istft(processed_spec.to(self.device)) | |
| processed_wav = processed_wav[:, :, trim:-trim].transpose(0, 1).reshape(2, -1).cpu().numpy() | |
| pw.append(processed_wav) | |
| processed_signal = np.concatenate(pw, axis=-1)[:, :-pad] | |
| q.put({_id: processed_signal}) | |
| print(f"[+] Wave segment {_id} processed") | |
| return processed_signal | |
| def process_wave(self, wave: np.array, mt_threads=1): | |
| print(f"[~] Processing wave with {mt_threads} threads...") | |
| self.prog = tqdm(total=0) | |
| chunk = wave.shape[-1] // mt_threads | |
| waves = self.segment(wave, False, chunk) | |
| q = queue.Queue() | |
| threads = [] | |
| for c, batch in enumerate(waves): | |
| mix_waves, pad, trim = self.pad_wave(batch) | |
| self.prog.total = len(mix_waves) * mt_threads | |
| thread = threading.Thread(target=self._process_wave, args=(mix_waves, trim, pad, q, c)) | |
| thread.start() | |
| threads.append(thread) | |
| for thread in threads: | |
| thread.join() | |
| self.prog.close() | |
| processed_batches = [] | |
| while not q.empty(): | |
| processed_batches.append(q.get()) | |
| processed_batches = [list(wave.values())[0] for wave in | |
| sorted(processed_batches, key=lambda d: list(d.keys())[0])] | |
| assert len(processed_batches) == len(waves), 'Incomplete processed batches, please reduce batch size!' | |
| print("[+] Wave processing completed") | |
| return self.segment(processed_batches, True, chunk) | |
| def run_mdx(model_params, output_dir, model_path, filename, exclude_main=False, exclude_inversion=False, suffix=None, invert_suffix=None, denoise=False, keep_orig=True, m_threads=2): | |
| print(f"[~] Running MDX on file: {filename}") | |
| device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') | |
| device_properties = torch.cuda.get_device_properties(device) | |
| vram_gb = device_properties.total_memory / 1024**3 | |
| m_threads = 1 if vram_gb < 8 else 2 | |
| print(f"[~] Using {m_threads} threads for processing") | |
| model_hash = MDX.get_hash(model_path) | |
| mp = model_params.get(model_hash) | |
| model = MDXModel( | |
| device, | |
| dim_f=mp["mdx_dim_f_set"], | |
| dim_t=2 ** mp["mdx_dim_t_set"], | |
| n_fft=mp["mdx_n_fft_scale_set"], | |
| stem_name=mp["primary_stem"], | |
| compensation=mp["compensate"] | |
| ) | |
| mdx_sess = MDX(model_path, model) | |
| print("[~] Loading audio file...") | |
| wave, sr = librosa.load(filename, mono=False, sr=44100) | |
| print("[~] Normalizing input wave...") | |
| peak = max(np.max(wave), abs(np.min(wave))) | |
| wave /= peak | |
| if denoise: | |
| print("[~] Denoising wave...") | |
| wave_processed = -(mdx_sess.process_wave(-wave, m_threads)) + (mdx_sess.process_wave(wave, m_threads)) | |
| wave_processed *= 0.5 | |
| else: | |
| print("[~] Processing wave...") | |
| wave_processed = mdx_sess.process_wave(wave, m_threads) | |
| wave_processed *= peak | |
| stem_name = model.stem_name if suffix is None else suffix | |
| main_filepath = None | |
| if not exclude_main: | |
| main_filepath = os.path.join(output_dir, f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav") | |
| print(f"[~] Writing main output to: {main_filepath}") | |
| sf.write(main_filepath, wave_processed.T, sr) | |
| invert_filepath = None | |
| if not exclude_inversion: | |
| diff_stem_name = stem_naming.get(stem_name) if invert_suffix is None else invert_suffix | |
| stem_name = f"{stem_name}_diff" if diff_stem_name is None else diff_stem_name | |
| invert_filepath = os.path.join(output_dir, f"{os.path.basename(os.path.splitext(filename)[0])}_{stem_name}.wav") | |
| print(f"[~] Writing inverted output to: {invert_filepath}") | |
| sf.write(invert_filepath, (-wave_processed.T * model.compensation) + wave.T, sr) | |
| if not keep_orig: | |
| print(f"[~] Removing original file: {filename}") | |
| os.remove(filename) | |
| print("[~] Cleaning up...") | |
| del mdx_sess, wave_processed, wave | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| print("[+] MDX processing completed") | |
| return main_filepath, invert_filepath | |
| def run_roformer(model_params, output_dir, model_name, filename, exclude_main=False, exclude_inversion=False, suffix=None, invert_suffix=None, denoise=False, keep_orig=True, m_threads=2): | |
| print(f"[~] Running RoFormer on file: {filename}") | |
| os.makedirs(output_dir, exist_ok=True) | |
| print("[~] Loading audio file...") | |
| wave, sr = librosa.load(filename, mono=False, sr=44100) | |
| base_name = os.path.splitext(os.path.basename(filename))[0] | |
| roformer_output_format = 'wav' | |
| roformer_overlap = 4 | |
| roformer_segment_size = 256 | |
| print(f"[~] Output directory: {output_dir}") | |
| prompt = f'audio-separator "{filename}" --model_filename {model_name} --output_dir="{output_dir}" --output_format={roformer_output_format} --normalization=0.9 --mdxc_overlap={roformer_overlap} --mdxc_segment_size={roformer_segment_size}' | |
| print(f"[~] Running command: {prompt}") | |
| os.system(prompt) | |
| vocals_file = f"{base_name}_Vocals.wav" | |
| instrumental_file = f"{base_name}_Instrumental.wav" | |
| main_filepath = None | |
| invert_filepath = None | |
| if not exclude_main: | |
| main_filepath = os.path.join(output_dir, vocals_file) | |
| if os.path.exists(os.path.join(output_dir, f"{base_name}_(Vocals)_{model_name.replace('.9755.ckpt', '')}.wav")): | |
| print(f"[~] Renaming vocals file to: {main_filepath}") | |
| os.rename(os.path.join(output_dir, f"{base_name}_(Vocals)_{model_name.replace('.9755.ckpt', '')}.wav"), main_filepath) | |
| if not exclude_inversion: | |
| invert_filepath = os.path.join(output_dir, instrumental_file) | |
| if os.path.exists(os.path.join(output_dir, f"{base_name}_(Instrumental)_{model_name.replace('.9755.ckpt', '')}.wav")): | |
| print(f"[~] Renaming instrumental file to: {invert_filepath}") | |
| os.rename(os.path.join(output_dir, f"{base_name}_(Instrumental)_{model_name.replace('.9755.ckpt', '')}.wav"), invert_filepath) | |
| if not keep_orig: | |
| print(f"[~] Removing original file: {filename}") | |
| os.remove(filename) | |
| print("[+] RoFormer processing completed") | |
| return main_filepath, invert_filepath |