import streamlit as st import torch from transformers import AutoProcessor, PaliGemmaForConditionalGeneration from PIL import Image # Load the model and processor model_id = "brucewayne0459/paligemma_derm" processor = AutoProcessor.from_pretrained(model_id) model = PaliGemmaForConditionalGeneration.from_pretrained(model_id) model.eval() # Set device device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # Add Hugging Face logo at the top st.markdown( """ """, unsafe_allow_html=True, ) # Streamlit app title and instructions st.title("Skin Condition Identifier") st.write("Upload an image and provide a text prompt to identify the skin condition.") # Column layout for input and display col1, col2 = st.columns([3, 2]) with col1: # File uploader for image uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) # Display uploaded image (if any) if uploaded_file: input_image = Image.open(uploaded_file).convert("RGB") st.image(input_image, caption="Uploaded Image", use_column_width=True) # Text input for prompt input_text = st.text_input("Enter your prompt:", "Identify the skin condition?") with col2: # Process and display the result when the button is clicked if uploaded_file and st.button("Analyze"): if not input_text.strip(): st.error("Please provide a valid prompt!") else: try: # Resize image for efficiency max_size = (512, 512) input_image = input_image.resize(max_size) # Prepare inputs with st.spinner("Processing..."): inputs = processor( text=input_text, images=input_image, return_tensors="pt", padding="longest" ).to(device) # Generate output with default max_new_tokens default_max_tokens = 50 # Set a default value for max tokens with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=default_max_tokens) # Decode output decoded_output = processor.decode(outputs[0], skip_special_tokens=True) # Display result st.success("Analysis Complete!") st.write("**Model Output:**", decoded_output) except Exception as e: st.error(f"Error: {str(e)}")