import streamlit as st import torch from transformers import AutoProcessor, PaliGemmaForConditionalGeneration from PIL import Image # Load the model and processor model_id = "brucewayne0459/paligemma_derm" processor = AutoProcessor.from_pretrained(model_id) model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, device_map={"": 0}) model.eval() # Set device device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # Streamlit app st.title("Skin Condition Identifier") st.write("Upload an image and provide a text prompt to identify the skin condition.") # File uploader for image uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) # Text input for prompt input_text = st.text_input("Enter your prompt:", "Identify the skin condition?") # Process and display the result when the button is clicked if uploaded_file is not None and st.button("Analyze"): try: # Open the uploaded image input_image = Image.open(uploaded_file).convert("RGB") st.image(input_image, caption="Uploaded Image", use_column_width=True) # Prepare inputs inputs = processor( text=input_text, images=input_image, return_tensors="pt", padding="longest" ).to(device) # Generate output max_new_tokens = 50 with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=max_new_tokens) # Decode output decoded_output = processor.decode(outputs[0], skip_special_tokens=True) # Display result st.success("Analysis Complete!") st.write("**Model Output:**", decoded_output) except Exception as e: st.error(f"Error: {str(e)}")