from pathlib import Path from num2words import num2words import numpy as np import random import re import textwrap import torch from shapely.geometry.polygon import Polygon import aggdraw from PIL import Image, ImageDraw, ImageOps, ImageFilter, ImageFont, ImageColor import gradio as gr from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM finetuned = AutoModelForCausalLM.from_pretrained('model') tokenizer = AutoTokenizer.from_pretrained('gpt2') device = "cuda:0" if torch.cuda.is_available() else "cpu" print(device) finetuned = finetuned.to(device) # Utility functions def containsNumber(value): for character in value: if character.isdigit(): return True return False housegan_labels = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "missing": 5, "closet": 6, "balcony": 7, "corridor": 8, "dining_room": 9, "laundry_room": 10} architext_colors = [[0, 0, 0], [249, 222, 182], [195, 209, 217], [250, 120, 128], [126, 202, 234], [190, 0, 198], [255, 255, 255], [6, 53, 17], [17, 33, 58], [132, 151, 246], [197, 203, 159], [6, 53, 17],] regex = re.compile(".*?\((.*?)\)") def draw_polygons(polygons, colors, im_size=(256, 256), b_color="white", fpath=None): image = Image.new("RGB", im_size, color="white") draw = aggdraw.Draw(image) for poly, color, in zip(polygons, colors): #get initial polygon coordinates xy = poly.exterior.xy coords = np.dstack((xy[1], xy[0])).flatten() # draw it on canvas, with the appropriate colors brush = aggdraw.Brush((0, 0, 0), opacity=255) draw.polygon(coords, brush) #get inner polygon coordinates small_poly = poly.buffer(-1, resolution=32, cap_style=2, join_style=2, mitre_limit=5.0) if small_poly.geom_type == 'MultiPolygon': mycoordslist = [list(x.exterior.coords) for x in small_poly] for coord in mycoordslist: coords = np.dstack((np.array(coord)[:,1], np.array(coord)[:, 0])).flatten() brush2 = aggdraw.Brush((0, 0, 0), opacity=255) draw.polygon(coords, brush2) elif poly.geom_type == 'Polygon': #get inner polygon coordinates xy2 = small_poly.exterior.xy coords2 = np.dstack((xy2[1], xy2[0])).flatten() # draw it on canvas, with the appropriate colors brush2 = aggdraw.Brush((color[0], color[1], color[2]), opacity=255) draw.polygon(coords2, brush2) image = Image.frombytes("RGB", (256,256), draw.tobytes()).transpose(Image.FLIP_TOP_BOTTOM) if(fpath): image.save(fpath, quality=100, subsampling=0) return draw, image def prompt_to_layout(user_prompt, top_p, top_k, fpath=None): if(containsNumber(user_prompt) == True): spaced_prompt = user_prompt.split(' ') new_prompt = ' '.join([word if word.isdigit() == False else num2words(int(word)).lower() for word in spaced_prompt]) model_prompt = '[User prompt] {} [Layout]'.format(new_prompt) model_prompt = '[User prompt] {} [Layout]'.format(user_prompt) #print(model_prompt) input_ids = tokenizer(model_prompt, return_tensors='pt').to(device) output = finetuned.generate(**input_ids, do_sample=True, top_p=top_p, top_k=top_k, eos_token_id=50256, max_length=400) output = tokenizer.batch_decode(output, skip_special_tokens=True) #print(output) layout = output[0].lstrip().split('[User prompt]')[1].split('[Layout] ')[1].split(', ') spaces = [txt.split(':')[0] for txt in layout] coordinates = [txt.split(':')[1] for txt in layout] coordinates = [re.findall(regex, coord) for coord in coordinates] polygons = [] for coord in coordinates: polygons.append([point.split(',') for point in coord]) geom = [] for poly in polygons: geom.append(Polygon(np.array(poly, dtype=int))) colors = [architext_colors[housegan_labels[space]] for space in spaces] _, im = draw_polygons(geom, colors, fpath=fpath) legend = Image.open("legend.png") im = np.array(im) im[:40, :] = np.array(legend) im = Image.fromarray(im) return im, layout, output def mut_txt2layout(mut_output): output = mut_output[0].rstrip().split('[User prompt]')[1].split('[Layout]')[1].split(', ') spaces = [txt.split(':')[0].strip(' ') for txt in output] coordinates = [txt.split(':')[1] for txt in output] coordinates = [re.findall(regex, coord) for coord in coordinates] polygons = [] for coord in coordinates: polygons.append([point.split(',') for point in coord]) geom = [] for poly in polygons: geom.append(Polygon(np.array(poly, dtype=int))) colors = [architext_colors[housegan_labels[space]] for space in spaces] _, im = draw_polygons(geom, colors, fpath=None) legend = Image.open("legend.png") im = np.array(im) im[:40, :] = np.array(legend) im = Image.fromarray(im) return im def prompt_with_mutation(user_prompt, top_p, top_k, mut_rate, fpath=None): #Create initial layout based on prompt im, layout, output = prompt_to_layout(user_prompt, top_p=top_p, top_k=top_k) #Create mutated layout based on initial mut_len = int((1-mut_rate)*len(layout)) index1 = random.randrange(0,len(layout)-mut_len) rooms = layout[index1:index1+mut_len] rooms[-1] = rooms[-1].split(':')[0] + ':' rooms = ', '.join(rooms)# + ', ' new_prompt = '[User prompt] {} [Layout] {}'.format(user_prompt, rooms) input_ids = tokenizer(new_prompt, return_tensors='pt').to(device) mut_output = finetuned.generate(**input_ids, do_sample=True, top_p=top_p, top_k=top_k, eos_token_id=50256, max_length=400) mut_output = tokenizer.batch_decode(mut_output, skip_special_tokens=True) mut_im = mut_txt2layout(mut_output) return im, mut_im # Gradio App custom_css=""" @import url("https://use.typekit.net/nid3pfr.css"); .gradio_page { display: flex; width: 100vw; min-height: 50vh; flex-direction: column; justify-content: center; align-items: center; margin: 0px; max-width: 100vw; background: #FFFFFF; } .gradio_interface { width: 100vw; max-width: 1500px; } .gradio_interface[theme=default] .panel_buttons { justify-content: flex-end; } .gradio_interface[theme=default] .panel_button { flex: 0 0 0; min-width: 150px; } .gradio_interface[theme=default] .panel_button.submit { background: #11213A; border-radius: 5px; color: #FFFFFF; text-transform: uppercase; min-width: 150px; height: 4em; letter-spacing: 0.15em; flex: 0 0 0; } .gradio_interface[theme=default] .panel_button.submit:hover { background: #000000; } .input_text { font: 200 50px garamond-premier-pro-display, serif; line-height: 115%; color: #11213A; border-radius: 0px; border: 3px solid #11213A; } .input_text:focus { border-color: #FA7880; } .gradio_interface[theme=default] .input_text input, .gradio_interface[theme=default] .input_text textarea { padding: 30px; } .input_text textarea:focus-visible { outline: none; } .panel:nth-child(1) { margin-left: 50px; margin-right: 50px; margin-top: 80px; margin-bottom: 80px; max-width: 750px; } .panel:nth-child(2) { background: #D3ECF5; } .gradio_interface[theme=default] .output_image .image_preview_holder { background: #D3ECF5; } .gradio_interface[theme=default] .component_set { background: transparent; opacity: 1 !important; }""" def gen_and_mutate(user_prompt, mutate=False, top_p=0.94, top_k=100, mut_rate=0.2): if(mutate): im, mut_im = None, None while (mut_im is None): try: im, mut_im = prompt_with_mutation(user_prompt, top_p, top_k, mut_rate) except: pass else: mut_im=Image.open("empty.png") im, _, _ = prompt_to_layout(user_prompt, top_p, top_k) return im, mut_im checkbox = gr.inputs.Checkbox(label='Mutate') topp_slider = gr.inputs.Slider(0.1, 1.0, 0.01, default=0.94, label='top_p') topk_slider = gr.inputs.Slider(0, 100, 25, default=0, label='top_k') mut_slider = gr.inputs.Slider(0.2, 0.8, 0.1, default=0.3, label='Mutation rate') textbox = gr.inputs.Textbox(placeholder='a house with two bedrooms and one bathroom', lines="2", label="DESCRIBE YOUR DESIGN") generated = gr.outputs.Image(label='Generated Layout') mutated = gr.outputs.Image(label='Mutated Layout') iface = gr.Interface(fn=gen_and_mutate, inputs=[textbox, checkbox, topp_slider, topk_slider, mut_slider], outputs=[generated, mutated], css=custom_css, thumbnail="thumbnail_gradio.PNG", description='Demo of Semantic Generation of Residential Layouts \n', article='''

This app allows users the use of natural language prompts for appartment layout generation, using a variety of semantic information:

You can also create a mutation of the generated layout by enabling the 'Mutate' option.

Made by: Theodoros Galanos and Tyler Lastovich, using a finetuned GPT-Neo model.

''') iface.launch()