import os import spaces from threading import Thread from typing import Iterator, List, Tuple import json import requests import gradio as gr import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # Description for the Gradio Interface DESCRIPTION = """\ # Zero GPU Model Comparison Arena Select two different models from the dropdowns and see how they perform on the same input. """ # Constants MAX_MAX_NEW_TOKENS = 256 DEFAULT_MAX_NEW_TOKENS = 128 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) # Device configuration device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Model options MODEL_OPTIONS = [ "sarvamai/OpenHathi-7B-Hi-v0.1-Base", "TokenBender/Navarna_v0_1_OpenHermes_Hindi" ] # Load models and tokenizers models = {} tokenizers = {} for model_id in MODEL_OPTIONS: tokenizers[model_id] = AutoTokenizer.from_pretrained(model_id) models[model_id] = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", load_in_8bit=True, ) models[model_id].eval() # Set pad_token_id to eos_token_id if it's not set if tokenizers[model_id].pad_token_id is None: tokenizers[model_id].pad_token_id = tokenizers[model_id].eos_token_id # Function to log comparisons def log_comparison(model1_name: str, model2_name: str, question: str, answer1: str, answer2: str, winner: str = None): log_data = { "question": question, "model1": {"name": model1_name, "answer": answer1}, "model2": {"name": model2_name, "answer": answer2}, "winner": winner } # Send log data to remote server try: response = requests.post('http://144.24.151.32:5000/log', json=log_data, timeout=5) if response.status_code == 200: print("Successfully logged to server") else: print(f"Failed to log to server. Status code: {response.status_code}") except requests.RequestException as e: print(f"Error sending log to server: {e}") # Function to prepare input def prepare_input(model_id: str, message: str, chat_history: List[Tuple[str, str]]): tokenizer = tokenizers[model_id] # Prepare inputs for the model inputs = tokenizer( [x[1] for x in chat_history] + [message], return_tensors="pt", truncation=True, padding=True, max_length=MAX_INPUT_TOKEN_LENGTH, ) return inputs # Function to generate responses from models @spaces.GPU(duration=120) def generate( model_id: str, message: str, chat_history: List[Tuple[str, str]], max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, temperature: float = 0.4, top_p: float = 0.95, ) -> Iterator[str]: model = models[model_id] tokenizer = tokenizers[model_id] inputs = prepare_input(model_id, message, chat_history) input_ids = inputs.input_ids if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, temperature=temperature, num_beams=1, pad_token_id=tokenizer.eos_token_id, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) # Function to compare two models def compare_models( model1_name: str, model2_name: str, message: str, chat_history1: List[Tuple[str, str]], chat_history2: List[Tuple[str, str]], max_new_tokens: int, temperature: float, top_p: float, ) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]]]: if model1_name == model2_name: error_message = [("System", "Error: Please select two different models.")] return error_message, error_message, chat_history1, chat_history2 output1 = "".join(list(generate(model1_name, message, chat_history1, max_new_tokens, temperature, top_p))) output2 = "".join(list(generate(model2_name, message, chat_history2, max_new_tokens, temperature, top_p))) chat_history1.append((message, output1)) chat_history2.append((message, output2)) log_comparison(model1_name, model2_name, message, output1, output2) return chat_history1, chat_history2, chat_history1, chat_history2 # Function to log the voting result def vote_better(model1_name, model2_name, question, answer1, answer2, choice): winner = model1_name if choice == "Model 1" else model2_name log_comparison(model1_name, model2_name, question, answer1, answer2, winner) return f"You voted that {winner} performs better. This has been logged." # Gradio UI setup with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): model1_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 1", value=MODEL_OPTIONS[0]) chatbot1 = gr.Chatbot(label="Model 1 Output") with gr.Column(): model2_dropdown = gr.Dropdown(choices=MODEL_OPTIONS, label="Model 2", value=MODEL_OPTIONS[1]) chatbot2 = gr.Chatbot(label="Model 2 Output") text_input = gr.Textbox(label="Input Text", lines=3) with gr.Row(): max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, value=DEFAULT_MAX_NEW_TOKENS) temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7) top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, value=0.95) compare_btn = gr.Button("Compare Models") with gr.Row(): better1_btn = gr.Button("Model 1 is Better") better2_btn = gr.Button("Model 2 is Better") vote_output = gr.Textbox(label="Voting Result") compare_btn.click( compare_models, inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, max_new_tokens, temperature, top_p], outputs=[chatbot1, chatbot2, chatbot1, chatbot2] ) better1_btn.click( vote_better, inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 1", visible=False)], outputs=[vote_output] ) better2_btn.click( vote_better, inputs=[model1_dropdown, model2_dropdown, text_input, chatbot1, chatbot2, gr.Textbox(value="Model 2", visible=False)], outputs=[vote_output] ) # Main function to run the Gradio app if __name__ == "__main__": demo.queue(max_size=3).launch(share=True)